91 research outputs found

    Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms

    Get PDF
    Developing both graphical and commandline user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The technological The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software - BioImage Suite (bioimagesuite.org)

    Self-assembly of pH-responsive fluorinated dendrimer-based particulates for drug delivery and noninvasive imaging

    Get PDF
    a b s t r a c t Dendrimers are nanoscale macromolecules with well-defined branching chemical structures. Control over the architecture and function of these structures has enabled many advances in materials science and biomedical applications. Though dendrimers are directly synthesized by iteration of simple repetitive steps, generation of the larger, more complex structures required for many biomedical applications by covalent synthetic methods has been challenging. Here we demonstrate a spontaneous self-assembly of poly(amidoamine) dendrimers into complex nanoscopic and microscopic particulates following partial fluorination of the constituent dendrimer subunits. These dense particulates exhibit a stimulus-induced response to low external pH that causes their disassembly over time, enabling controlled release of encapsulated agents. In addition, we show that these assemblies offer a sufficiently high density of fluorine spins to enable detection of their site-specific accumulation in vivo b

    Multisite reliability of MR-based functional connectivity

    Get PDF
    Recent years have witnessed an increasing number of multisite MRI functional connectivity (fcMRI) studies. While multisite studies are an efficient way to speed up data collection and increase sample sizes, especially for rare clinical populations, any effects of site or MRI scanner could ultimately limit power and weaken results. Little data exists on the stability of functional connectivity measurements across sites and sessions. In this study, we assess the influence of site and session on resting state functional connectivity measurements in a healthy cohort of traveling subjects (8 subjects scanned twice at each of 8 sites) scanned as part of the North American Prodrome Longitudinal Study (NAPLS). Reliability was investigated in three types of connectivity analyses: (1) seed-based connectivity with posterior cingulate cortex (PCC), right motor cortex (RMC), and left thalamus (LT) as seeds; (2) the intrinsic connectivity distribution (ICD), a voxel-wise connectivity measure; and (3) matrix connectivity, a whole-brain, atlas-based approach assessing connectivity between nodes. Contributions to variability in connectivity due to subject, site, and day-of-scan were quantified and used to assess between-session (test-retest) reliability in accordance with Generalizability Theory. Overall, no major site, scanner manufacturer, or day-of-scan effects were found for the univariate connectivity analyses; instead, subject effects dominated relative to the other measured factors. However, summaries of voxel-wise connectivity were found to be sensitive to site and scanner manufacturer effects. For all connectivity measures, although subject variance was three times the site variance, the residual represented 60–80% of the variance, indicating that connectivity differed greatly from scan to scan independent of any of the measured factors (i.e., subject, site, and day-of-scan). Thus, for a single 5 min scan, reliability across connectivity measures was poor (ICC=0.07–0.17), but increases with increasing scan duration (ICC=0.21–0.36 at 25 min). The limited effects of site and scanner manufacturer support the use of multisite studies, such as NAPLS, as a viable means of collecting data on rare populations and increasing power in univariate functional connectivity studies. However, the results indicate that aggregation of fcMRI data across longer scan durations is necessary to increase the reliability of connectivity estimates at the single-subject level

    High-throughput functional analysis of autism genes in zebrafish identifies convergence in dopaminergic and neuroimmune pathways

    Get PDF
    Advancing from gene discovery in autism spectrum disorders (ASDs) to the identification of biologically relevant mechanisms remains a central challenge. Here, we perform parallel in vivo functional analysis of 10 ASD genes at the behavioral, structural, and circuit levels in zebrafish mutants, revealing both unique and overlapping effects of gene loss of function. Whole-brain mapping identifies the forebrain and cerebellum as the most significant contributors to brain size differences, while regions involved in sensory-motor control, particularly dopaminergic regions, are associated with altered baseline brain activity. Finally, we show a global increase in microglia resulting from ASD gene loss of function in select mutants, implicating neuroimmune dysfunction as a key pathway relevant to ASD biology
    • …
    corecore