Self-assembly of pH-responsive fluorinated dendrimer-based particulates for drug delivery and noninvasive imaging

Abstract

a b s t r a c t Dendrimers are nanoscale macromolecules with well-defined branching chemical structures. Control over the architecture and function of these structures has enabled many advances in materials science and biomedical applications. Though dendrimers are directly synthesized by iteration of simple repetitive steps, generation of the larger, more complex structures required for many biomedical applications by covalent synthetic methods has been challenging. Here we demonstrate a spontaneous self-assembly of poly(amidoamine) dendrimers into complex nanoscopic and microscopic particulates following partial fluorination of the constituent dendrimer subunits. These dense particulates exhibit a stimulus-induced response to low external pH that causes their disassembly over time, enabling controlled release of encapsulated agents. In addition, we show that these assemblies offer a sufficiently high density of fluorine spins to enable detection of their site-specific accumulation in vivo b

    Similar works