20 research outputs found

    Few vs many-body physics of an impurity immersed in a superfluid of spin 1/2 attractive fermions

    Full text link
    In this article we investigate the properties of an impurity immersed in a superfluid of strongly correlated spin 1/2 fermions. For resonant interactions, we first relate the stability diagram of dimer and trimer states to the three-body problem for an impurity interacting with a pair of fermions. Then we calculate the beyond-mean-field corrections to the energy of a weakly interacting impurity. We show that these corrections are divergent and have to be regularized by properly accounting for three-body physics in the problem

    Momentum distribution of a dilute unitary Bose gas with three-body losses

    Get PDF
    Using Boltzmann's equation, we study the effect of three-body losses on the momentum distribution of a homogeneous unitary Bose gas in the dilute limit where quantum correlations are negligible. We calculate the momentum distribution of the gas and show that inelastic collisions are quantitatively as important as a second order virial correction.Comment: 4 pages + supplemental materia

    Hydrodynamic spectrum of a superfluid in an elongated trap

    Get PDF
    --In this article we study the hydrodynamic spectrum of a superfluid confined in a cylindrical trap. We show that the dispersion relation ω\omega(q) of the phonon branch scales like \sqrt q at large q, leading to a vanishingly small superfluid critical velocity. In practice the critical velocity is set by the breakdown of the hydrodynamic approximation. For a broad class of superfluids, this entails a reduction of the critical velocity by a factor (ω\omega ⊄\perp /\"i1/2c) 1/3 with respect to the free-space prediction (here ω\omega ⊄\perp is the trapping frequency and \"i1/2c the chemical potential of the cloud)

    Condensation Energy of a Spin-1/2 Strongly Interacting Fermi Gas

    Full text link
    We report a measurement of the condensation energy of a two-component Fermi gas with tunable interactions. From the equation of state of the gas, we infer the properties of the normal phase in the zero-temperature limit. By comparing the pressure of the normal phase at T=0 to that of the low-temperature superfluid phase, we deduce the condensation energy, i.e. the energy gain of the system in being in the superfluid rather than normal state. We compare our measurements to a ladder approximation description of the normal phase, and to a fixed node Monte-Carlo approach, finding excellent agreement. We discuss the relationship between condensation energy and pairing gap in the BEC-BCS crossover.Comment: 4 figure

    Second-order virial expansion for an atomic gas in a harmonic waveguide

    Get PDF
    International audienceThe virial expansion for cold two-component Fermi and Bose atomic gases is considered in the presence of a waveguide and in the vicinity of a Feshbach resonance. The interaction between atoms and the coupling with the Feshbach molecules is modeled using a quantitative separable two-channel model. The scattering phase-shift in an atomic waveguide is defined. This permits us to extend the Beth-Uhlenbeck formula for the second-order virial coefficient to this inhomogeneous case

    Current noise through a Kondo quantum dot in a SU(N) Fermi liquid state

    Full text link
    The current noise through a mesoscopic quantum dot is calculated and analyzed in the Fermi liquid regime of the SU(N) Kondo model. Results connect the Johnson-Nyquist noise to the shot noise for an arbitrary ratio of voltage and temperature, and show that temperature corrections are sizeable in usual experiments. For the experimentally relevant SU(4) case, quasiparticle interactions are shown to increase the shot noise.Comment: 4 pages, 2 figures, to be published in Phys. Rev. Lett. (revised version
    corecore