26 research outputs found

    From Tethered to Freestanding Stabilizers of 14-3-3 Protein-Protein Interactions through Fragment Linking

    Get PDF
    Small-molecule stabilization of protein-protein interactions (PPIs) is a promising strategy in chemical biology and drug discovery. However, the systematic discovery of PPI stabilizers remains a largely unmet challenge. Herein we report a fragment-linking approach targeting the interface of 14-3-3 and a peptide derived from the estrogen receptor alpha (ERα) protein. Two classes of fragments—a covalent and a noncovalent fragment—were co-crystallized and subsequently linked, resulting in a noncovalent hybrid molecule in which the original fragment interactions were largely conserved. Supported by 20 crystal structures, this initial hybrid molecule was further optimized, resulting in selective, 25-fold stabilization of the 14-3-3/ERα interaction. The high-resolution structures of both the single fragments, their co-crystal structures and those of the linked fragments document a feasible strategy to develop orthosteric PPI stabilizers by linking to an initial tethered fragment.</p

    Silanisation de polysaccharides en milieu liquide ionique et réactivité d’un organoalkoxysilane vis-à-vis de nucléophiles simples : vers des hydrogels injectables pour l’ingénierie tissulaire du cartilage

    No full text
    Tissue engineering is a real challenge for the treatment of cartilage pathologies. In this field, biomimetic hydrogels based on natural polymers are among the most commonly used matrices. A hydrogel made of silanized hydroxypropylmethylcellulose (HPMC-Si) is especially promising because it can be injected in cartilaginous lesions by minimally invasive surgery. However, the current synthesis of HPMC-Si is limited by the insolubility of hydroxypropylmethylcellulose (HPMC). This thesis work was focused on finding new synthesis conditions for the design of HPMC-Si hydrogel. In order to obtain a complete solubilization of HPMC and to improve its functionalization by the (3-glycidyloxypropyl) trimethoxysilane (GPTMS), the use of ionic liquids (IL), which are excellent solvents for polysaccharides, was undertaken. The beginning of this study was first devoted to the selection of an IL and then to the development of new reaction conditions. With these new conditions, higher silicon rates were obtained for HPMC modified in ionic liquid medium, however no hydrogel could be formed. The second part was therefore devoted to the synthesis of GPTMS 13C. Indeed, thanks to this radiolabeling, a structural characterization by 13C NMR of the HPMC-Si could be achieved. Finally, the reactivity in organic solvents of three organosilanes, including the GPTMS, was investigated toward nucleophiles representing the common functions found in natural polymers (e.g. -NH2, -OH, -SH). The results of this thesis have provided insights into the GPTMS reactivity in organic medium and thus paves the way to new conditions for the silanization of polysaccharides.L’ingénierie tissulaire représente un véritable enjeu pour le traitement des pathologies du cartilage. Dans ce domaine, les hydrogels biomimétiques à base de biopolymères figurent parmi les matrices les plus utilisées. L’hydrogel à base d’hydroxypropylméthylcellulose silanisée (HPMC Si) est particulièrement prometteur car il peut être injecté, par chirurgie mini-invasive, dans les lésions cartilagineuses. Néanmoins, la synthèse actuelle de l’HPMC Si est limitée par l’insolubilité de l’HPMC. Ce travail porte sur la recherche de conditions de synthèse de l’HPMC-Si plus homogène. Afin d’obtenir une solubilisation totale de l’HPMC et améliorer sa fonctionnalisation par le (3-glycidyloxypropyl) triméthoxysilane (GPTMS), il a été envisagé de recourir aux liquides ioniques (LI), d’excellents solvants des polysaccharides. La première partie de cette étude a consisté à sélectionner un LI et mettre au point des conditions réactionnelles optimales. Des taux de silicium supérieurs à la synthèse hétérogène ont alors été obtenus. Néanmoins, aucun hydrogel n’a pu être formé. La deuxième partie a été consacrée à la synthèse de GPTMS marqué au 13C. En effet, grâce à ce marquage, une caractérisation structurale par RMN 13C des HPMC-Si pourrait être réalisée. La dernière partie de ce travail a porté sur la réactivité en milieu organique de trois organosilanes, dont le GPTMS, vis-à-vis de nucléophiles représentatifs des fonctions généralement portées par les polymères naturels (e.g. -NH2, -OH, -SH). Les résultats de ce travail de thèse ont permis de mieux comprendre la réactivité du GPTMS en milieu organique et leur analyse permet d'ouvrir la voie à de nouvelles conditions de silanisation

    Structure-Based Drug Discovery of IRE1 Modulators

    No full text
    International audienceIRE1α (inositol-requiring enzyme 1 alpha, referred to IRE1 hereafter) is an Endoplasmic Reticulum (ER) resident transmembrane enzyme with cytosolic kinase/RNAse activities. Upon ER stress IRE1 is activated through trans-autophosphorylation and oligomerization, resulting in a conformational change of the RNase domain, thereby promoting two signaling pathways: i) the non-conventional splicing of XBP1 mRNA and ii) the regulated IRE1-dependent decay of RNA (RIDD). IRE1 RNase activity has been linked to diverse pathologies such as cancer or inflammatory, metabolic, and degenerative diseases and the modulation of IRE1 activity is emerging as an appealing therapeutic strategy against these diseases. Several modulators of IRE1 activity have been reported in the past, but none have successfully translated into the clinics as yet. Based on our expertise in the field, we describe in this chapter the approaches and protocols we used to discover novel IRE1 modulators and characterize their effect on IRE1 activity

    Structure simplification of the Securinine skeleton reveals the importance of BCD ring system for the cytotoxic activity on HCT116 and HL60 cell lines

    No full text
    International audienceFunction-oriented molecular editing of the polycyclic scaffold of securinine led to the preparation of a library of simplified analogs that have been evaluated for their cytotoxicity potential against HCT116 and HL60 human cell lines. Chemical diversity at the C14 position (securinine numbering) was generated through the site-selective γ-iodination followed by Pd-catalyzed Sonogashira and Suzuki-Miyaura reactions. To explain the selectivity in the iodination step, a reaction mechanism has been proposed. Surprisingly, the piperidine ring (ring A) of the securinine skeleton has been found to be irrelevant for the cytotoxic activity. Based on this finding, the pharmacophoric core of securinine could be simplified to the key BCD motif. The nature of the substituent at the nitrogen can vary from a methyl or an isobutyl group to a benzyl or a carbamate moiety. Interestingly, the N-benzyl substituted simplified analog exhibited the same cytotoxic activity as the parent compound securinine. This functional group tolerance paves the way for the installation of reactive handles for the synthesis of molecular probes for target identification

    Data_Sheet_1_Coalescent simulations indicate that the São Francisco River is a biogeographic barrier for six vertebrates in a seasonally dry South American forest.ZIP

    No full text
    The riverine barrier hypothesis has been extensively explored in Neotropical rainforests, while its importance in drier regions such as the Caatinga, a seasonally dry tropical forest in northeastern Brazil, has only recently received more attention. The Caatinga is bisected by the São Francisco River (SFR), which has long been suggested to be an important biogeographic feature in the region. However, recent studies have found mixed support for the role of the SFR as a hard barrier, most of them relying on the presence or absence of genetic breaks congruent with its course. Here, we used published multilocus and next-generation data from six vertebrate species to test the SFR’s strength as a barrier. Using model-based approaches (approximate Bayesian computation and supervised machine learning), we tested demographic models incorporating full, intermediate, and zero migration across the SFR, estimating divergence times and migration rates for each species. We found support for the SFR’s role as a barrier, allowing gene flow for some species. Estimated divergence times varied among species but are limited to the late Pleistocene, coherent with one of several proposed paleocourse changes in the river’s geological history. Contrary to the mixed results of previous studies, our study supports the SFR as an important phylogeographic barrier across different taxonomic groups, driving diversification in the Caatinga.</p

    Design Polysaccharides of Marine Origin: Chemical Modifications to Reach Advanced Versatile Compounds

    No full text
    Polysaccharides are among the most abundant macromolecules on Earth. These polymers are easily obtained from various marine resources such as algae, microorganisms and crustacean shells. The structure of these natural carbohydrates is innovative and quite complex. Marine biopolymers represent key scaffolds toward large challenging fields, such as biomedical applications (glycosaminoglycans, regenerative medicine and drug delivery) and tailored biomaterials. Chemical modifications can be applied to modify their final properties in a specific purpose. New functional glycans are achievable and represent a real potential with their intrinsic biocompatibility and biodegradability. Hydroxyl groups are ubiquitous in polysaccharides structure and involved in most of the chemical modifications. The most useful functionalities are ester, ether, amide, amine and alkyl groups. The starting materials could be a natural or depolymerized polymers and the reaction considered with a regioselective point of view. In this review, we will focus on chitin polysaccharide, which is extracted according to industrial processing from exoskeleton of several marine crustaceans. A subsequent deacylation provides chitosan. This marine polysaccharide is very similar to cellulose, a widespread fiber plant organic polymer, except for an amine group on the C2 position instead of a hydroxyl group. Furthermore, seaweeds provide the most abundant sources of polysaccharides: alginates, agar/agarose, carrageenans and fuco dans. In order to improve the original physicochemical and biochemical properties, we will highlight the chemical modifications involving the listed marine polysaccharides of interest

    Data_Sheet_3_Coalescent simulations indicate that the São Francisco River is a biogeographic barrier for six vertebrates in a seasonally dry South American forest.zip

    No full text
    The riverine barrier hypothesis has been extensively explored in Neotropical rainforests, while its importance in drier regions such as the Caatinga, a seasonally dry tropical forest in northeastern Brazil, has only recently received more attention. The Caatinga is bisected by the São Francisco River (SFR), which has long been suggested to be an important biogeographic feature in the region. However, recent studies have found mixed support for the role of the SFR as a hard barrier, most of them relying on the presence or absence of genetic breaks congruent with its course. Here, we used published multilocus and next-generation data from six vertebrate species to test the SFR’s strength as a barrier. Using model-based approaches (approximate Bayesian computation and supervised machine learning), we tested demographic models incorporating full, intermediate, and zero migration across the SFR, estimating divergence times and migration rates for each species. We found support for the SFR’s role as a barrier, allowing gene flow for some species. Estimated divergence times varied among species but are limited to the late Pleistocene, coherent with one of several proposed paleocourse changes in the river’s geological history. Contrary to the mixed results of previous studies, our study supports the SFR as an important phylogeographic barrier across different taxonomic groups, driving diversification in the Caatinga.</p

    Data_Sheet_2_Coalescent simulations indicate that the São Francisco River is a biogeographic barrier for six vertebrates in a seasonally dry South American forest.ZIP

    No full text
    The riverine barrier hypothesis has been extensively explored in Neotropical rainforests, while its importance in drier regions such as the Caatinga, a seasonally dry tropical forest in northeastern Brazil, has only recently received more attention. The Caatinga is bisected by the São Francisco River (SFR), which has long been suggested to be an important biogeographic feature in the region. However, recent studies have found mixed support for the role of the SFR as a hard barrier, most of them relying on the presence or absence of genetic breaks congruent with its course. Here, we used published multilocus and next-generation data from six vertebrate species to test the SFR’s strength as a barrier. Using model-based approaches (approximate Bayesian computation and supervised machine learning), we tested demographic models incorporating full, intermediate, and zero migration across the SFR, estimating divergence times and migration rates for each species. We found support for the SFR’s role as a barrier, allowing gene flow for some species. Estimated divergence times varied among species but are limited to the late Pleistocene, coherent with one of several proposed paleocourse changes in the river’s geological history. Contrary to the mixed results of previous studies, our study supports the SFR as an important phylogeographic barrier across different taxonomic groups, driving diversification in the Caatinga.</p

    Data_Sheet_1_Coalescent simulations indicate that the São Francisco River is a biogeographic barrier for six vertebrates in a seasonally dry South American forest.docx

    No full text
    The riverine barrier hypothesis has been extensively explored in Neotropical rainforests, while its importance in drier regions such as the Caatinga, a seasonally dry tropical forest in northeastern Brazil, has only recently received more attention. The Caatinga is bisected by the São Francisco River (SFR), which has long been suggested to be an important biogeographic feature in the region. However, recent studies have found mixed support for the role of the SFR as a hard barrier, most of them relying on the presence or absence of genetic breaks congruent with its course. Here, we used published multilocus and next-generation data from six vertebrate species to test the SFR’s strength as a barrier. Using model-based approaches (approximate Bayesian computation and supervised machine learning), we tested demographic models incorporating full, intermediate, and zero migration across the SFR, estimating divergence times and migration rates for each species. We found support for the SFR’s role as a barrier, allowing gene flow for some species. Estimated divergence times varied among species but are limited to the late Pleistocene, coherent with one of several proposed paleocourse changes in the river’s geological history. Contrary to the mixed results of previous studies, our study supports the SFR as an important phylogeographic barrier across different taxonomic groups, driving diversification in the Caatinga.</p
    corecore