7,369 research outputs found

    Kinematics analysis and optimization of the exoskeleton’s knee joint

    Get PDF
    Two major defects of the exoskeleton’s single-axis knee joint were exposed in human-machine coordination experiments, which are chattering of hip and knee joints and pull-feeling at ankle joint. In order to analyze and solve these issues, human gait experiments were conducted to obtain the human gait data, and a kinematic model of the exoskeleton was established. Kinematics analysis of the exoskeleton based on the human’s hip and knee joint angles indicated the obvious human-machine ankle joint movement error; inverse kinematics analysis of the exoskeleton according to the human ankle joint trajectory reflected the abrupt angle changes of exoskeleton’s hip and knee joints. According to these analysis results, kinematics differences between the exoskeleton’s single-axis knee joint and human’s trochlea knee joint were regarded as the primary cause of the defects observed in human-machine coordination experiments. The exoskeleton’s knee joint was optimized in four-bar linkage type to imitate the kinematics characteristics of human’s knee joint. Kinematics simulation results of the optimized exoskeleton showed that human-machine ankle joint movement error and abrupt angle changes of the exoskeleton’s hip and knee joints have been both significantly reduced, thus the effectiveness of the exoskeleton’s knee joint optimization for improving the human-machine coordination could be confirmed

    Two-orbital spin-fermion model study of ferromagnetism in honeycomb lattice

    Full text link
    The spin-fermion model was previously successful to describe the complex phase diagrams of colossal magnetoresistive manganites and iron-based superconductors. In recent years, two-dimensional magnets have rapidly raised up as a new attractive branch of quantum materials, which are theoretically described based on classical spin models in most studies. Alternatively, here the two-orbital spin-fermion model is established as a uniform scenario to describe the ferromagnetism in a two-dimensional honeycomb lattice. This model connects the magnetic interactions with the electronic structures. Then the continuous tuning of magnetism in these honeycomb lattices can be predicted, based on a general phase diagram. The electron/hole doping, from the empty ege_{g} to half-filled ege_{g} limit, is studied as a benchmark. Our Monte Carlo result finds that the ferromagnetic TCT_{C} reaches the maximum at the quarter-filled case. In other regions, the linear relationship between TCT_{C} and doping concentration provides a theoretical guideline for the experimental modulations of two-dimensional ferromagnetism tuned by ionic liquid or electrical gating

    Epididymis rhabdomyoma: A case report and literature review

    Get PDF
    Genital rhabdomyoma is very rare tumor that usually occurs in the vulvar of young women. Epididymis rhabdomyoma in a young man is extremely uncommon and has rarely been reported. Here, we report a case of epididymis rhabdomyoma of a 17-year-old man and review the literatures. VIRTUAL SLIDE: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/117762822469279

    Discovery of four gravitational lensing systems by clusters in the SDSS DR6

    Full text link
    We report the discovery of 4 strong gravitational lensing systems by visual inspections of the Sloan Digital Sky Survey images of galaxy clusters in Data Release 6 (SDSS DR6). Two of the four systems show Einstein rings while the others show tangential giant arcs. These arcs or rings have large angular separations (>8") from the bright central galaxies and show bluer color compared with the red cluster galaxies. In addition, we found 5 probable and 4 possible lenses by galaxy clusters.Comment: 6 pages, 3 figures. Added referenc

    Greenhouse gas emissions from U.S. crude oil pipeline accidents:1968 to 2020

    Get PDF
    Abstract Crude oil pipelines are considered as the lifelines of energy industry. However, accidents of the pipelines can lead to severe public health and environmental concerns, in which greenhouse gas (GHG) emissions, primarily methane, are frequently overlooked. While previous studies examined fugitive emissions in normal operation of crude oil pipelines, emissions resulting from accidents were typically managed separately and were therefore not included in the emission account of oil systems. To bridge this knowledge gap, we employed a bottom-up approach to conducted the first-ever inventory of GHG emissions resulting from crude oil pipeline accidents in the United States at the state level from 1968 to 2020, and leveraged Monte Carlo simulation to estimate the associated uncertainties. Our results reveal that GHG emissions from accidents in gathering pipelines (~720,000 tCO2e) exceed those from transmission pipelines (~290,000 tCO2e), although significantly more accidents have occurred in transmission pipelines (6883 cases) than gathering pipelines (773 cases). Texas accounted for over 40% of total accident-related GHG emissions nationwide. Our study contributes to enhanced accuracy of the GHG account associated with crude oil transport and implementing the data-driven climate mitigation strategies

    Terahertz generation in Czochralski grown periodically poled Mg:Y:LiNbO3 via optical rectification

    Full text link
    Using a canonical pump-probe experimental technique, we studied the terahertz (THz) waves generation and detection via optical rectification and mixing in Czochralski-grown periodically poled Mg:Y:LiNbO3 (PPLN) crystals. THz waves with frequencies at 1.37 THz and 0.68 THz as well as 1.8 THz were obtained for PPLN with nonlinear grating periods of 0.03 and 0.06 mm, respectively. A general theoretical model was developed by considering the dispersion and damping of low frequency phonon-polariton mode. Our results show that THz waves are generated in forward and backward directions via pumping pulse rectification. The generated THz waves depend on the spectral shape of the laser pulses, quasi-phase mismatches and dispersion characteristics of a crystal.Comment: 25 pages, 4 figure
    corecore