1,019 research outputs found

    Random Lasing Action from Randomly Assembled ZnS Nanosheets

    Get PDF
    Lasing characteristics of randomly assembled ZnS nanosheets are studied at room temperature. Under 266-nm optical excitation, sharp lasing peaks emitted at around 332 nm with a linewidth less than 0.4 nm are observed in all directions. In addition, the dependence of lasing threshold intensity with the excitation area is shown in good agreement with the random laser theory. Hence, it is verified that the lasing characteristics of randomly assembled ZnS nanosheets are attributed to coherent random lasing action

    Ordered arrays of multiferroic epitaxial nanostructures

    Get PDF
    Epitaxial heterostructures combining ferroelectric (FE) and ferromagnetic (FiM) oxides are a possible route to explore coupling mechanisms between the two independent order parameters, polarization and magnetization of the component phases. We report on the fabrication and properties of arrays of hybrid epitaxial nanostructures of FiM NiFe2O4 (NFO) and FE PbZr0.52Ti0.48O3 or PbZr0.2Ti0.8O3, with large range order and lateral dimensions from 200 nm to 1 micron

    Identification of Mycobacterium tuberculosis Resistance to Common Antibiotics: An Overview of Current Methods and Techniques

    Get PDF
    Xue-Song Xiong,1,2,* Xue-Di Zhang,3,* Jia-Wei Yan,3 Ting-Ting Huang,1,2 Zhan-Zhong Liu,4 Zheng-Kang Li,5 Liang Wang,5 Fen Li1,2 1Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Yangzhou University, Huai’an, Jiangsu Province, People’s Republic of China; 2Department of Laboratory Medicine, The Fifth People’s Hospital of Huai’an, Huai’an, Jiangsu Province, People’s Republic of China; 3Department of Laboratory Medicine, Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu Province, People’s Republic of China; 4Department of Pharmacy, Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu Province, People’s Republic of China; 5Department of Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China*These authors contributed equally to this workCorrespondence: Liang Wang; Fen Li, Email [email protected]; [email protected]: Multidrug-resistant tuberculosis (MDR-TB) is an essential cause of tuberculosis treatment failure and death of tuberculosis patients. The rapid and reliable profiling of Mycobacterium tuberculosis (MTB) drug resistance in the early stage is a critical research area for public health. Then, most traditional approaches for detecting MTB are time-consuming and costly, leading to the inappropriate therapeutic schedule resting on the ambiguous information of MTB drug resistance, increasing patient economic burden, morbidity, and mortality. Therefore, novel diagnosis methods are frequently required to meet the emerging challenges of MTB drug resistance distinguish. Considering the difficulty in treating MDR-TB, it is urgently required for the development of rapid and accurate methods in the identification of drug resistance profiles of MTB in clinical diagnosis. This review discussed recent advances in MTB drug resistance detection, focusing on developing emerging approaches and their applications in tangled clinical situations. In particular, a brief overview of antibiotic resistance to MTB was present, referred to as intrinsic bacterial resistance, consisting of cell wall barriers and efflux pumping action and acquired resistance caused by genetic mutations. Then, different drug susceptibility test (DST) methods were described, including phenotype DST, genotype DST and novel DST methods. The phenotype DST includes nitrate reductase assay, RocheTM solid ratio method, and liquid culture method and genotype DST includes fluorescent PCR, GeneXpert, PCR reverse dot hybridization, ddPCR, next-generation sequencing and gene chips. Then, novel DST methods were described, including metabolism testing, cell-free DNA probe, CRISPR assay, and spectral analysis technique. The limitations, challenges, and perspectives of different techniques for drug resistance are also discussed. These methods significantly improve the detection sensitivity and accuracy of multidrug-resistant tuberculosis (MRT) and can effectively curb the incidence of drug-resistant tuberculosis and accelerate the process of tuberculosis eradication. Keywords: MTB, antibiotic resistance, Raman spectroscopy, rapid detectio

    Inhibition of APE1/Ref-1 redox signaling alleviates intestinal dysfunction and damage to myenteric neurons in a mouse model of spontaneous chronic colitis

    Get PDF
    Background:Inflammatory bowel disease (IBD) associates with damage to the enteric nervous system (ENS), leading to gastrointestinal (GI)dysfunction. Oxidative stress is important for the pathophysiology of inflammation-induced enteric neuropathy and GI dysfunction. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a dual functioning protein that is an essential regulator of the cellular response tooxidative stress. In this study, we aimed to determine whether an APE1/Ref-1 redox domain inhibitor, APX3330, alleviates inflammation-inducedoxidative stress that leads to enteric neuropathy in the Winnie murine model of spontaneous chronic colitis.Methods: Winnie mice received APX3330 or vehicle via intraperitoneal injections over 2 weeks and were compared with C57BL/6 controls. Invivo disease activity and GI transit were evaluated. Ex vivo experiments were performed to assess functional parameters of colonic motility, immune cell infiltration, and changes to the ENS.Results: Targeting APE1/Ref-1 redox activity with APX3330 improved disease severity, reduced immune cell infiltration, restored GI function ,and provided neuroprotective effects to the enteric nervous system. Inhibition of APE1/Ref-1 redox signaling leading to reduced mitochondrial superoxide production, oxidative DNA damage, and translocation of high mobility group box 1 protein (HMGB1) was involved inneuroprotective effects of APX3330 in enteric neurons.Conclusions: This study is the first to investigate inhibition of APE1/Ref-1’s redox activity via APX3330 in an animal model of chronic intestinal inflammation. Inhibition of the redox function of APE1/Ref-1 is a novel strategy that might lead to a possible application of APX3330 forthe treatment of IBD

    Plasminogen Activator Inhibitor-1 4G/5G Gene Polymorphism and Coronary Artery Disease in the Chinese Han Population: A Meta-Analysis

    Get PDF
    Background: The polymorphism of plasminogen activator inhibitor-1 (PAI-1) 4G/5G gene has been indicated to be correlated with coronary artery disease (CAD) susceptibility, but study results are still debatable. Objective and Methods: The present meta-analysis was performed to investigate the association between PAI-1 4G/5G gene polymorphism and CAD in the Chinese Han population. A total of 879 CAD patients and 628 controls from eight separate studies were involved. The pooled odds ratio (OR) for the distribution of the 4G allele frequency of PAI-1 4G/5G gene and its corresponding 95 % confidence interval (CI) was assessed by the random effect model. Results: The distribution of the 4 G allele frequency was 0.61 for the CAD group and 0.51 for the control group. The association between PAI-1 4G/5G gene polymorphism and CAD in the Chinese Han population was significant under an allelic genetic model (OR = 1.70, 95 % CI = 1.18 to 2.44, P = 0.004). The heterogeneity test was also significant (P,0.0001). Meta-regression was performed to explore the heterogeneity source. Among the confounding factors, the heterogeneity could be explained by the publication year (P = 0.017), study region (P = 0.014), control group sample size (P = 0.011), total sample size (P = 0.011), and ratio of the case to the control group sample size (RR) (P = 0.019). In a stratified analysis by the total sample size, significantly increased risk was only detected in subgroup 2 under an allelic genetic model (OR = 1.93, 95% CI = 1.09 to 3.35, P = 0.02)

    Graphene plasmonics

    Full text link
    Two rich and vibrant fields of investigation, graphene physics and plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons that are tunable and adjustable, but a combination of graphene with noble-metal nanostructures promises a variety of exciting applications for conventional plasmonics. The versatility of graphene means that graphene-based plasmonics may enable the manufacture of novel optical devices working in different frequency ranges, from terahertz to the visible, with extremely high speed, low driving voltage, low power consumption and compact sizes. Here we review the field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version available only at publisher's web site

    Is preview benefit from word n + 2 a common effect in reading Chinese? Evidence from eye movements

    Get PDF
    Although most studies of reading English (and other alphabetic languages) have indicated that readers do not obtain preview benefit from word n + 2, Yang, Wang, Xu, and Rayner (2009) reported evidence that Chinese readers obtain preview benefit from word n + 2. However, this effect may not be common in Chinese because the character prior to the target word in Yang et al.’s experiment was always a very high frequency function word. In the current experiment, we utilized a relatively low frequency word n + 1 to examine whether an n + 2 preview benefit effect would still exist and failed to find any preview benefit from word n + 2. These results are consistent with a recent study which indicated that foveal load modulates the perceptual span during Chinese reading (Yan, Kliegl, Shu, Pan, & Zhou, 2010). Implications of these results for models of eye movement control are discussed
    corecore