332 research outputs found
A potential-pulse interference method for studies of the nucleation of a single silver centre on carbon microelectrodes
A potential-pulse interference method has been developed for detailed studies of the nucleation at a single nucleus. Following a potential step from a positive overpotential to a sufficiently negative overpotential at which nucleation takes place, a single reverse pulse or repetitive potential-pulse train is then applied at certain stage before a critical nucleus is formed to interfere with the nucleation process. Nucleation is then allowed to continue at a stable overpotential until a critical nucleus is formed. By comparing the arrival-time distributions of the critical nuclei with and without the pulse interference, information about the mechanism of the nucleation can be obtained. In particular, it is found that a termination process is involved in the formation of a single silver nucleus at medium and low potentials, and that the structures of the critical nuclei may be different at different overpotentials
A Novel Splicing Mutation Alters DSPP Transcription and Leads to Dentinogenesis Imperfecta Type II
Dentinogenesis imperfecta (DGI) type II is an autosomal dominant disease characterized by a serious disorders in teeth. Mutations of dentin sialophosphoprotein (DSPP) gene were revealed to be the causation of DGI type II (DGI-II). In this study, we identified a novel mutation (NG_011595.1:g.8662T>C, c.135+2T>C) lying in the splice donor site of intron 3 of DSPP gene in a Chinese Han DGI-II pedigree. It was found in all affected subjects but not in unaffected ones or other unrelated healthy controls. The function of the mutant DSPP gene, which was predicted online and subsequently confirmed by in vitro splicing analysis, was the loss of splicing of intron 3, leading to the extended length of DSPP mRNA. For the first time, the functional non-splicing of intron was revealed in a novel DSPP mutation and was considered as the causation of DGI-II. It was also indicated that splicing was of key importance to the function of DSPP and this splice donor site might be a sensitive mutation hot spot. Our findings combined with other reports would facilitate the genetic diagnosis of DGI-II, shed light on its gene therapy and help to finally conquer human diseases
Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.)
Stigma and spikelet characteristics play an essential role in hybrid seed production. A mini-core of 90 accessions developed from USDA rice core collection was phenotyped in field grown for nine traits of stigma and spikelet and genotyped with 109 DNA markers, 108 SSRs plus an indel. Three major clusters were built upon Rogers’ genetic distance, indicative of indicas, and temperate and tropical japonicas. A mixed linear model combining PC-matrix and K-matrix was adapted for mapping marker-trait associations. Resulting associations were adjusted using false discovery rate technique. We identified 34 marker-trait associations involving 22 SSR markers for eight traits. Four markers were associated with single stigma exsertion (SStgE), six with dual exsertion (DStgE) and five with total exsertion. RM5_Chr1 played major role indicative of high regression with not only DStgE but also SStgE. Four markers were associated with spikelet length, three with width and seven with L/W ratio. Numerous markers were co-associated with multiple traits that were phenotypically correlated, i.e. RM12521_Chr2 associated with all three correlated spikelet traits. The co-association should improve breeding efficiency because single marker could be used to assist breeding for multiple traits. Indica entry 1032 (cultivar 50638) and japonica entry 671 (cultivar Linia 84 Icar) with 80.65 and 75.17% of TStgE, respectively are recommended to breeder for improving stigma exsertion
Clinical research evidence of cupping therapy in China: a systematic literature review
<p>Abstract</p> <p>Background</p> <p>Though cupping therapy has been used in China for thousands of years, there has been no systematic summary of clinical research on it.</p> <p>This review is to evaluate the therapeutic effect of cupping therapy using evidence-based approach based on all available clinical studies.</p> <p>Methods</p> <p>We included all clinical studies on cupping therapy for all kinds of diseases. We searched six electronic databases, all searches ended in December 2008. We extracted data on the type of cupping and type of diseases treated.</p> <p>Results</p> <p>550 clinical studies were identified published between 1959 and 2008, including 73 randomized controlled trials (RCTs), 22 clinical controlled trials, 373 case series, and 82 case reports. Number of RCTs obviously increased during past decades, but the quality of the RCTs was generally poor according to the risk of bias of the Cochrane standard for important outcome within each trials. The diseases in which cupping was commonly employed included pain conditions, herpes zoster, cough or asthma, etc. Wet cupping was used in majority studies, followed by retained cupping, moving cupping, medicinal cupping, etc. 38 studies used combination of two types of cupping therapies. No serious adverse effects were reported in the studies.</p> <p>Conclusions</p> <p>According to the above results, quality and quantity of RCTs on cupping therapy appears to be improved during the past 50 years in China, and majority of studies show potential benefit on pain conditions, herpes zoster and other diseases. However, further rigorous designed trials in relevant conditions are warranted to support their use in practice.</p
Identification of miRs-143 and -145 that Is Associated with Bone Metastasis of Prostate Cancer and Involved in the Regulation of EMT
The principal problem arising from prostate cancer (PCa) is its propensity to metastasize to bone. MicroRNAs (miRNAs) play a crucial role in many tumor metastases. The importance of miRNAs in bone metastasis of PCa has not been elucidated to date. We investigated whether the expression of certain miRNAs was associated with bone metastasis of PCa. We examined the miRNA expression profiles of 6 primary and 7 bone metastatic PCa samples by miRNA microarray analysis. The expression of 5 miRNAs significantly decreased in bone metastasis compared with primary PCa, including miRs-508-5p, -145, -143, -33a and -100. We further examined other samples of 16 primary PCa and 13 bone metastases using real-time PCR analysis. The expressions of miRs-143 and -145 were verified to down-regulate significantly in metastasis samples. By investigating relationship of the levels of miRs-143 and -145 with clinicopathological features of PCa patients, we found down-regulations of miRs-143 and -145 were negatively correlated to bone metastasis, the Gleason score and level of free PSA in primary PCa. Over-expression miR-143 and -145 by retrovirus transfection reduced the ability of migration and invasion in vitro, and tumor development and bone invasion in vivo of PC-3 cells, a human PCa cell line originated from a bone metastatic PCa specimen. Their upregulation also increased E-cadherin expression and reduced fibronectin expression of PC-3 cells which revealed a less invasive morphologic phenotype. These findings indicate that miRs-143 and -145 are associated with bone metastasis of PCa and suggest that they may play important roles in the bone metastasis and be involved in the regulation of EMT Both of them may also be clinically used as novel biomarkers in discriminating different stages of human PCa and predicting bone metastasis
Sugarcane genes associated with sucrose content
<p>Abstract</p> <p>Background -</p> <p>Sucrose content is a highly desirable trait in sugarcane as the worldwide demand for cost-effective biofuels surges. Sugarcane cultivars differ in their capacity to accumulate sucrose and breeding programs routinely perform crosses to identify genotypes able to produce more sucrose. Sucrose content in the mature internodes reach around 20% of the culms dry weight. Genotypes in the populations reflect their genetic program and may display contrasting growth, development, and physiology, all of which affect carbohydrate metabolism. Few studies have profiled gene expression related to sugarcane's sugar content. The identification of signal transduction components and transcription factors that might regulate sugar accumulation is highly desirable if we are to improve this characteristic of sugarcane plants.</p> <p>Results -</p> <p>We have evaluated thirty genotypes that have different Brix (sugar) levels and identified genes differentially expressed in internodes using cDNA microarrays. These genes were compared to existing gene expression data for sugarcane plants subjected to diverse stress and hormone treatments. The comparisons revealed a strong overlap between the drought and sucrose-content datasets and a limited overlap with ABA signaling. Genes associated with sucrose content were extensively validated by qRT-PCR, which highlighted several protein kinases and transcription factors that are likely to be regulators of sucrose accumulation. The data also indicate that aquaporins, as well as lignin biosynthesis and cell wall metabolism genes, are strongly related to sucrose accumulation. Moreover, sucrose-associated genes were shown to be directly responsive to short term sucrose stimuli, confirming their role in sugar-related pathways.</p> <p>Conclusion -</p> <p>Gene expression analysis of sugarcane populations contrasting for sucrose content indicated a possible overlap with drought and cell wall metabolism processes and suggested signaling and transcriptional regulators to be used as molecular markers in breeding programs. Transgenic research is necessary to further clarify the role of the genes and define targets useful for sugarcane improvement programs based on transgenic plants.</p
- …