1,731 research outputs found

    Source contributions to ambient VOCs and CO at a rural site in eastern China

    Get PDF
    Ambient data on volatile organic compounds (VOCs) and carbon monoxide (CO) obtained at a rural site in eastern China are analyzed to investigate the nature of emission sources and their relative contributions to ambient concentrations. A principal component analysis (PCA) showed that vehicle emissions and biofuel burning, biomass burning and industrial emissions were the major sources of VOCs and CO at the rural site. The source apportionments were then evaluated using an absolute principal component scores (APCS) technique combined with multiple linear regressions. The results indicated that 71%±5% (average±standard error) of the total VOC emissions were attributed to a combination of vehicle emissions and biofuel burning, and 7%±3% to gasoline evaporation and solvent emissions. Both biomass burning and industrial emissions contributed to 11%±1% and 11%±0.03% of the total VOC emissions, respectively. In addition, vehicle emissions and biomass and biofuel burning accounted for 96%±6% of the total CO emissions at the rural site, of which the biomass burning was responsible for 18%±3%. The results based on PCA/APCS are generally consistent with those from the emission inventory, although a larger relative contribution to CO from biomass burning is indicated from our analysis. © 2004 Elsevier Ltd. All rights reserved

    Characteristics of nonmethane hydrocarbons (NMHCs) in industrial, industrial-urban, and industrial-suburban atmospheres of the Pearl River Delta (PRD) region of south China

    Get PDF
    In a study conducted in late summer 2000, a wide range of volatile organic compounds (VOCs) were measured throughout five target cities in the Pearl River Delta (PRD) region of south China. Twenty-eight nonmethane hydrocarbons (NMHCs; 13 saturated, 9 unsaturated, and 6 aromatic) are discussed. The effect of rapid industrialization was studied for three categories of landuse in the PRD: Industrial, industrial-urban, and industrial-suburban. The highest VOC mixing ratios were observed in industrial areas. Despite its relatively short atmospheric lifetime (2-3 days), toluene, which is largely emitted from industrial solvent use and vehicular emissions, was the most abundant NMHC quantified. Ethane, ethene, ethyne, propane, n-butane, i-pentane, benzene, and m-xylene were the next most abundant VOCs. Direct emissions from industrial activities were found to greatly impact the air quality in nearby neighborhoods. These emissions lead to large concentration variations for many VOCs in the five PRD study cities. Good correlations between isoprene and several short-lived combustion products were found in industrial areas, suggesting that in addition to biogenic sources, anthropogenic emissions may contribute to urban isoprene levels. This study provides a snapshot of industrial, industrial-urban, and industrial-suburban NMHCs in the five most industrially developed cities of the PRD. Increased impact of industrial activities on PRD air quality due to the rapid spread of industry from urban to suburban and rural areas, and the decrease of farmland, is expected to continue until effective emission standards are implemented. Copyright 2006 by the American Geophysical Union

    Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model

    Get PDF
    A photochemical trajectory model (PTM), coupled with the Master Chemical Mechanism (MCM) describing the degradation of 139 volatile organic compounds (VOCs) in the troposphere, was developed and used for the first time to simulate the formation of photochemical pollutants at Wangqingsha (WQS), Guangzhou during photochemical pollution episodes between 12 and 17 November, 2007. The simulated diurnal variations and mixing ratios of ozone were in good agreement with observed data (R2=0.80, P<0.05), indicating that the photochemical trajectory model - an integration of boundary layer trajectories, precursor emissions and chemical processing - provides a reasonable description of ozone formation in the Pearl River Delta (PRD) region. Calculated photochemical ozone creation potential (POCP) indices for the region indicated that alkanes and oxygenated organic compounds had relatively low reactivity, while alkenes and aromatics presented high reactivity, as seen in other airsheds in Europe. Analysis of the emission inventory found that the sum of 60 of the 139 VOC species accounted for 92% of the total POCP-weighted emission. The 60 VOC species include C2-C6 alkenes, C6-C8 aromatics, biogenic VOCs, and so on. The results indicated that regional scale ozone formation in the PRD region can be mainly attributed to a relatively small number of VOC species, namely isoprene, ethene, m-xylene, and toluene, etc. A further investigation of the relative contribution of the main emission source categories to ozone formation suggested that mobile sources were the largest contributor to regional O3 formation (40%), followed by biogenic sources (29%), VOC product-related sources (23%), industry (6%), biomass burning (1%), and power plants (1%). The findings obtained in this study would advance our knowledge of air quality in the PRD region, and provide useful information to local government on effective control of photochemical smog in the region. © 2010 Elsevier Ltd

    Cervical lymph node metastatic patterns of squamous carcinomas in the upper aerodigestive tract

    Get PDF
    The radical neck dissection specimens of 384 ethnically Chinese patients with different primary squamous carcinomas in the head and neck region were studied. Over 50 per cent of the specimens showed metastatic disease at one level in the neck. For oral cavity carcinoma, the levels of metastasis frequently involved were I, II and III while for carcinoma of the oropharynx, hypopharynx and larynx, the levels were II, III and IV. Extracapsular spread was present in 112/384 of patients (29 per cent) and this increased with advancing N-stages. Based on these findings, different selective neck dissections could be used for patients harbouring different primary head and neck carcinomas with limited neck disease.published_or_final_versio

    DNA regulatory motif selection based on support vector machine (SVM) and its application in microarray experiment of Kashin-Beck disease

    Get PDF
    Conserved DNA sequences are essential to investigate the regulation and expression of nearby genes. The conserved regions can interact with certain proteins and can potentially determine the transcription speed and amount of the corresponding mRNA in gene replication process. In this paper, motifs of coexpressed genes of microarray experiments were explored with discovery algorithms. Then a selection algorithm based on support vector machine (SVM) was applied to identify those motifs which mostly influenced gene expression. This method combined the advantages from both matrix based motif finding and functional motif selection. When applied to Kashin-Beck disease (KBD), this method identified 9 motifs, and revealed that some motifs may be related to the immune reactions. In addition, we suggested that the methods used could be applied to other microarray experiments to explore the underlying relationships between motif types and gene functions.Key words: Support vector machine (SVM), microarray, motif discovery, gene regulation, Kashin-Beck disease

    The Case For Sequencing The Pacific Oyster Genome

    Get PDF
    An international community of biologists presents the Pacific oyster Crassostrea gigas as a candidate for genome sequencing. This oyster has global distribution and for the past several years the highest annual production of any freshwater or marine organism (4.2 million metric tons, worth $3.5 billion US). Economic and cultural importance of oysters motivates a great deal of biologic research, which provides a compelling rationale for sequencing an oyster genome. Strong rationales for sequencing the oyster genome also come from contrasts to other genomes: membership in the Lophotrochozoa, an understudied branch of the Eukaryotes and high fecundity, with concomitantly high DNA sequence polymorphism and a population biology that is more like plants than any of the model animals whose genomes have been sequenced to date. Finally, oysters play an important, sentinel role in the estuarine and coastal marine habitats, where most humans live, environmental degradation is substantial, and oysters suffer intense fishing pressures and natural mortalities from disease and stress. Consumption of contaminated oysters can pose risks to human health from infectious diseases. The genome of the Pacific oyster, at IC = 0.89 pg or similar to 824 Mb, ranks in the bottom 12% of genome sizes for the Phylum Mollusca. The biologic and genomic resources available for the Pacific oyster are unparalleled by resources for any other bivalve mollusc or marine invertebrate. Inbred lines have been developed for experimental crosses and genetics research. Use of DNA from inbred lines is proposed as a strategy for reducing the high nucleotide polymorphism, which can interfere with shotgun sequencing approaches. We have moderately dense linkage maps and various genomic and expressed DNA libraries. The value of these existing resources for a broad range of evolutionary and environmental sciences will be greatly leveraged by having a draft genome sequence
    corecore