255 research outputs found

    Cover to Volume 3

    Get PDF
    The fibroblast mitogen platelet-derived growth factor -BB (PDGF-BB) induces a transient expression of the orphan nuclear receptor NR4A1 (also named Nur77, TR3 or NGFIB). The aim of the present study was to investigate the pathways through which NR4A1 is induced by PDGF-BB and its functional role. We demonstrate that in PDGF-BB stimulated NIH3T3 cells, the MEK1/2 inhibitor CI-1040 strongly represses NR4A1 expression, whereas Erk5 downregulation delays the expression, but does not block it. Moreover, we report that treatment with the NF-κB inhibitor BAY11-7082 suppresses NR4A1 mRNA and protein expression. The majority of NR4A1 in NIH3T3 was found to be localized in the cytoplasm and only a fraction was translocated to the nucleus after continued PDGF-BB treatment. Silencing NR4A1 slightly increased the proliferation rate of NIH3T3 cells; however, it did not affect the chemotactic or survival abilities conferred by PDGF-BB. Moreover, overexpression of NR4A1 promoted anchorage-independent growth of NIH3T3 cells and the glioblastoma cell lines U-105MG and U-251MG. Thus, whereas NR4A1, induced by PDGF-BB, suppresses cell growth on a solid surface, it increases anchorage-independent growth

    SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black

    Get PDF
    SiC nanowires have been synthesized at 1,600 °C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO2nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism

    Steroid receptor coactivator 1 deficiency increases MMTV-neu mediated tumor latency and differentiation specific gene expression, decreases metastasis, and inhibits response to PPAR ligands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The peroxisome proliferator activated receptor (PPAR) subgroup of the nuclear hormone receptor superfamily is activated by a variety of natural and synthetic ligands. PPARs can heterodimerize with retinoid X receptors, which have homology to other members of the nuclear receptor superfamily. Ligand binding to PPAR/RXRs results in recruitment of transcriptional coactivator proteins such as steroid receptor coactivator 1 (SRC-1) and CREB binding protein (CBP). Both SRC-1 and CBP are histone acetyltransferases, which by modifying nucleosomal histones, produce more open chromatin structure and increase transcriptional activity. Nuclear hormone receptors can recruit limiting amounts of coactivators from other transcription factor binding sites such as AP-1, thereby inhibiting the activity of AP-1 target genes. PPAR and RXR ligands have been used in experimental breast cancer therapy. The role of coactivator expression in mammary tumorigenesis and response to drug therapy has been the subject of recent studies.</p> <p>Methods</p> <p>We examined the effects of loss of SRC-1 on MMTV-neu mediated mammary tumorigenesis.</p> <p>Results</p> <p>SRC-1 null mutation in mammary tumor prone mice increased the tumor latency period, reduced tumor proliferation index and metastasis, inhibited response to PPAR and RXR ligands, and induced genes involved in mammary gland differentiation. We also examined human breast cancer cell lines overexpressing SRC-1 or CBP. Coactivator overexpression increased cellular proliferation with resistance to PPAR and RXR ligands and remodeled chromatin of the proximal epidermal growth factor receptor promoter.</p> <p>Conclusions</p> <p>These results indicate that histone acetyltransferases play key roles in mammary tumorigenesis and response to anti-proliferative therapies.</p

    An Inhibitory Effect of Extracellular Ca2+ on Ca2+-Dependent Exocytosis

    Get PDF
    Aim: Neurotransmitter release is elicited by an elevation of intracellular Ca 2+ concentration ([Ca 2+] i). The action potential triggers Ca 2+ influx through Ca 2+ channels which causes local changes of [Ca 2+] i for vesicle release. However, any direct role of extracellular Ca 2+ (besides Ca 2+ influx) on Ca 2+-dependent exocytosis remains elusive. Here we set out to investigate this possibility on rat dorsal root ganglion (DRG) neurons and chromaffin cells, widely used models for studying vesicle exocytosis. Results: Using photolysis of caged Ca 2+ and caffeine-induced release of stored Ca 2+, we found that extracellular Ca 2+ inhibited exocytosis following moderate [Ca 2+]i rises (2–3 mM). The IC50 for extracellular Ca 2+ inhibition of exocytosis (ECIE) was 1.38 mM and a physiological reduction (,30%) of extracellular Ca 2+ concentration ([Ca 2+]o) significantly increased the evoked exocytosis. At the single vesicle level, quantal size and release frequency were also altered by physiological [Ca 2+] o. The calcimimetics Mg 2+,Cd 2+, G418, and neomycin all inhibited exocytosis. The extracellular Ca 2+-sensing receptor (CaSR) was not involved because specific drugs and knockdown of CaSR in DRG neurons did not affect ECIE. Conclusion/Significance: As an extension of the classic Ca 2+ hypothesis of synaptic release, physiological levels of extracellular Ca 2+ play dual roles in evoked exocytosis by providing a source of Ca 2+ influx, and by directly regulatin

    Microwave-Assisted Synthesis of Titania Nanocubes, Nanospheres and Nanorods for Photocatalytic Dye Degradation

    Get PDF
    TiO2nanostructures with fascinating morphologies like cubes, spheres, and rods were synthesized by a simple microwave irradiation technique. Tuning of different morphologies was achieved by changing the pH and the nature of the medium or the precipitating agent. As-synthesized titania nanostructures were characterized by X-ray diffraction (XRD), UV–visible spectroscopy, infrared spectroscopy (IR), BET surface area, photoluminescence (PL), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques. Photocatalytic dye degradation studies were conducted using methylene blue under ultraviolet light irradiation. Dye degradation ability for nanocubes was found to be superior to the spheres and the rods and can be attributed to the observed high surface area of nanocubes. As-synthesized titania nanostructures have shown higher photocatalytic activity than the commercial photocatalyst Degussa P25 TiO2

    Thyroid Disruption by Di-n-Butyl Phthalate (DBP) and Mono-n-Butyl Phthalate (MBP) in Xenopus laevis

    Get PDF
    BACKGROUND: Di-n-butyl phthalate (DBP), a chemical widely used in many consumer products, is estrogenic and capable of producing seriously reproductive and developmental effects in laboratory animals. However, recent in vitro studies have shown that DBP and mono-n-butyl phthalate (MBP), the major metabolite of DBP, possessed thyroid hormone receptor (TR) antagonist activity. It is therefore important to consider DBP and MBP that may interfere with thyroid hormone system. METHODOLOGY/PRINCIPAL FINDINGS: Nieuwkoop and Faber stage 51 Xenopus laevis were exposed to DBP and MBP (2, 10 or 15 mg/L) separately for 21 days. The two test chemicals decelerated spontaneous metamorphosis in X. laevis at concentrations of 10 and 15 mg/L. Moreover, MBP seemed to possess stronger activity. The effects of DBP and MBP on inducing changes of expression of selected thyroid hormone response genes: thyroid hormone receptor-beta (TRβ), retinoid X receptor gamma (RXRγ), alpha and beta subunits of thyroid-stimulating hormone (TSHα and TSHβ) were detected by qPCR at all concentrations of the compounds. Using mammalian two-hybrid assay in vitro, we found that DBP and MBP enhanced the interactions between co-repressor SMRT (silencing mediator for retinoid and thyroid hormone receptors) and TR in a dose-dependent manner, and MBP displayed more markedly. In addition, MBP at low concentrations (2 and 10 mg/L) caused aberrant methylation of TRβ in head tissue. CONCLUSIONS: The current findings highlight potential disruption of thyroid signalling by DBP and MBP and provide data for human risk assessment

    Expression of nuclear retinoid receptors in normal, premalignant and malignant gastric tissues determined by in situ hybridization

    Get PDF
    [[abstract]]Retinoids exhibit multiple functions through interaction with nuclear retinoid receptors and have growth-suppressive activity on gastric cancer cells. To better understand the roles of nuclear retinoid receptors during gastric carcinogenesis, we have used in situ hybridization to investigate expression of retinoic acid receptors (RARs) and retinoid x receptors (RXRs) in premalignant and malignant formalin-fixed paraffin-embedded gastric tissues. Histological sections of eight normal, 17 distal normal and nine gastric cancer tissues were hybridized with non-radioactive RNA probes for subtypes of RAR and RXR. Expression of RARα, RARβ, RARγ, RXRα and RXRβ was found in most cell types in gastric mucosa tissues from normal individuals as well as in distal normal tissues from cancer patients. Expression of RARα and RARβ were found in three and seven cancer tissues, respectively, and levels of RXRα mRNA were significantly decreased in poorly differentiated cancer tissues. Among the five investigated nuclear retinoid receptors, only expression of RARα mRNA was significantly decreased in intestinal metaplasia, dysplasia and cancer tissues when compared to adjacent normal tissues. In conclusion, normal gastric mucosa expressed both RARs and RXRs, which supports the physiological role of retinoic acid on normal gastric mucosa. The decrease in RARα expression in premalignant and malignant gastric tissues suggests a significant role of RARα during gastric carcinogenesis.[[notice]]補正完畢[[incitationindex]]SC

    Inhibitory effects of retinoic acid metabolism blocking agents (RAMBAs) on the growth of human prostate cancer cells and LNCaP prostate tumour xenografts in SCID mice

    Get PDF
    In recent studies, we have identified several highly potent all-trans-retinoic acid (ATRA) metabolism blocking agents (RAMBAs). On the basis of previous effects of liarozole (a first-generation RAMBA) on the catabolism of ATRA and on growth of rat Dunning R3227G prostate tumours, we assessed the effects of our novel RAMBAs on human prostate tumour (PCA) cell lines. We examined three different PCA cell lines to determine their capacity to induce P450-mediated oxidation of ATRA. Among the three different cell lines, enhanced catabolism was detected in LNCaP, whereas it was not found in PC-3 and DU-145. This catabolism was strongly inhibited by our RAMBAs, the most potent being VN/14-1, VN/50-1, VN/66-1, and VN/69-1 with IC50 values of 6.5, 90.0, 62.5, and 90.0 nM, respectively. The RAMBAs inhibited the growth of LNCaP cells with IC50 values in the μM-range. In LNCaP cell proliferation assays, VN/14-1, VN/50-1, VN/66-1, and VN/69-1 also enhanced by 47-, 60-, 70-, and 65-fold, respectively, the ATRA-mediated antiproliferative activity. We then examined the molecular mechanism underlying the growth inhibitory properties of ATRA alone and in combination with RAMBAs. The mechanism appeared to involve the induction of differentiation, cell-cycle arrest, and induction of apoptosis (TUNEL), involving increase in Bad expression and decrease in Bcl-2 expression. Treatment of LNCaP tumours growing in SCID mice with VN/66-1 and VN/69-1 resulted in modest but statistically significant tumour growth inhibition of 44 and 47%, respectively, while treatment with VN/14-1 was unexpectedly ineffective. These results suggest that some of our novel RAMBAs may be useful agents for the treatment of prostate cancer

    Higher-order multipole amplitude measurement in ψ ′→γχ c2

    Get PDF
    Using 106×106 ψ ′ events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition ψ ′→γχ c2→γπ +π -/γK +K - are measured. A fit to the χ c2 production and decay angular distributions yields M2=0.046±0. 010±0.013 and E3=0.015±0.008±0.018, where the first errors are statistical and the second systematic. Here M2 denotes the normalized magnetic quadrupole amplitude and E3 the normalized electric octupole amplitude. This measurement shows evidence for the existence of the M2 signal with 4.4σ statistical significance and is consistent with the charm quark having no anomalous magnetic moment. © 2011 American Physical Society.published_or_final_versio

    Determination of the number of J/ψ events with J/ψ → inclusive decays

    Get PDF
    postprin
    corecore