601 research outputs found
Transparent and Ultra-lightweight Design for Ultra-Broadband Asymmetric Transmission of Airborne Sound
© 2018 Chinese Physical Society and IOP Publishing Ltd. Acoustic one-way manipulations have recently attracted significant attention due to the deep implications in many diverse fields such as biomedical imaging and treatment. However, the previous mechanisms of asymmetric manipulation of airborne sound need to use elaborate heavyweight structures and only work in certain frequency ranges. We propose a mechanism for designing an ultra-lightweight and optically transparent structure with asymmetric transmission property for normally incident plane waves. Instead of fabricating solids into complicated artificial structures with limited bandwidth and heavy weight, we simply use xenon to fill a spatial region of asymmetric shape which allows the incident plane wave to pass along one direction while reflecting the reversed wave regardless of frequency. We demonstrate both analytically and numerically its effectiveness of producing highly-asymmetric transmission within an ultra-broad band. Our design offers new possibility for the design of one-way devices and may have far-reaching impact on various scenarios such as noise control
Antisense-induced suppression of taxoid 14β- hydroxylase gene expression in transgenic Taxus × media cells
The enzyme taxoid 14β-hydroxylase (14OH) directs a side-route of taxol pathway to 14β-hydroxy taxoids. Suppression of this side-route could increase the production of taxol. To suppress taxoid 14β- hydroxylase gene (14OH) expression in the Taxus × media TM3 cell line, antisense RNA inhibition approach was used in this study. Following the construction of an antisense RNA expression vector of 14OH from Taxus chinensis, the antisense 14OH cDNA (as14OH) was introduced into TM3 cells by Agrobacterium tumefaciens-mediated transformation. Southern blot analysis of hygromycin phosphotransferase gene (HYG) revealed that this selection gene was integrated successfully into the genome of Taxus × media cells. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that the 14OH mRNA level in transgenic cells dropped dramatically, suggesting that the expression of endogenous14OH gene was significantly suppressed by the exogenous as14OH gene. Correspondingly, the total yield of three major C-14 oxygenated taxoids (yunnanxane, taxuyunnanine C, sinenxan C) was markedly reduced in the silenced cell lines when compared with those of the nontransgenic controls. These results indicated that the antisense RNA strategy is a useful tool in suppressing the expression of genes in Taxus and this method could be used to silence other important genes that divert Taxol pathway to side-route metabolites.Key words: Taxus × media, taxoid 14β-hydroxylase, antisense, gene suppression
A standing-wave thermoacoustic engine driven by liquid nitrogen
Thermoacoustic oscillation at cryogenic temperatures, such as Taconis oscillation, has been typically suppressed in the former studies, and few efforts have been made to enhance it. We proposed a standing-wave thermoacoustic engine (TE) driven by liquid cryogens instead of the conventional heat to enhance the thermoacoustic effects and utilize the cold energy. Experimental and theoretical work has been performed on a self-made standingwave TE to demonstrate the feasibility and the operating characteristics of the engine driven by the liquid nitrogen. Experiments show that with nitrogen at 0.5 MPa as a working gas, a pressure ratio of 1.21 is obtained on the TE driven by liquid nitrogen with a much lower temperature difference along the stack compared to that of the conventional TE. The onset temperature difference decreases by 28.9% with helium at 0.63 MPa as a working gas, compared to that of the conventional TE. This study verifies the feasibility of enhancing the thermoacoustic oscillation at cryogenic temperatures. The TEs driven by liquid cryogens such as liquid nitrogen and liquefied nature gas (LNG), may be an alternative for recovering the cold energy
Employment of gene expression profiling to identify transcriptional regulators of hepatic stellate cells
Activated hepatic stellate cells (HSC) play a central role in scar formation that leads to liver fibrosis. The molecular mechanisms underlying this process are not fully understood. Microarray and bioinformatics analyses have proven to be useful in identifying transcription factors that regulate cellular processes such as cell differentiation. Using oligonucleotide microarrays, we performed transcriptional analyses of activated human HSC cultured on Matrigel-coated tissue culture dishes. Examination of microarray data following Matrigel-induced deactivation of HSC revealed a significant down-regulation of myocardin, an important transcriptional regulator in smooth and cardiac muscle development. Thus, gene expression profiling as well as functional assays of activated HSC have provided the first evidence of the involvement of myocardin in HSC activation
The Mitochondrial Genome of the Lycophyte Huperzia squarrosa: The Most Archaic Form in Vascular Plants
Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin
Fabrication of a Highly Sensitive Chemical Sensor Based on ZnO Nanorod Arrays
We report a novel method for fabricating a highly sensitive chemical sensor based on a ZnO nanorod array that is epitaxially grown on a Pt-coated Si substrate, with a top–top electrode configuration. To practically test the device, its O2 and NO2 sensing properties were investigated. The gas sensing properties of this type of device suggest that the approach is promising for the fabrication of sensitive and reliable nanorod chemical sensors
Lost in Translation? Accountability and Governance of Clinical Stem Cell Research in China
Despite China’s regulatory initiatives to promote its research accountability, it still needs to prove itself as a trusted player in life science research. In addition, in contrast to its huge investment, China is losing the race in delivering quality application of stem cells. The trial implementation of the 2015 ministerial regulations seemed to offer hope in ending this dual ‘lost-in-translation’. Yet skepticism remains. By examining China’s regulatory trajectory in the last 15 years, this paper illustrates that it is a post-hoc pragmatic policy rationale and a soft centralisation regulatory approach that have hampered China’s governance. To improve China’s governance of accountability, policy-makers need to get beyond an ‘act-in-response’ regulatory ethos and engage with diverse stakeholders
The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes
The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage
- …