155 research outputs found

    Effect of Sodium-Glucose Co-transporter 2 Inhibitors on Bone Metabolism and Fracture Risk

    Get PDF
    The effect of anti-diabetic medications on bone metabolism has received increasing attention, considering that type 2 diabetes mellitus is a common metabolic disorder with adverse effects on bone metabolism. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are novel anti-diabetic medications that prevent glucose resorption at the proximal convoluted tubules in the kidney, increasing urinary glucose excretion, and decreasing the blood glucose level. The superiority of SGLT2 inhibitors shows in reducing the glucose level independent of insulin secretion, lowering the risk of hypoglycemia, and improving cardiovascular outcomes. SGLT2 inhibitors have been associated with genital mycotic infections, increased risk of acute kidney injury, dehydration, orthostatic hypotension, and ketoacidosis. Moreover, the effect of SGLT2 inhibitors on bone metabolism and fracture risk has been widely taken into consideration. Our review summarizes the results of current studies investigating the effects of SGLT2 inhibitors on bone metabolism (possibly including increased bone turnover, disrupted bone microarchitecture, and reduced bone mineral density). Several mechanisms are probably involved, such as bone mineral losses due to the disturbed calcium and phosphate homeostasis, as confirmed by an increase in fibroblast growth factor 23 and parathyroid hormone levels and a decrease in 1,25-dihydroxyvitamin D levels. SGLT2 inhibitors might indirectly increase bone turnover by weight loss. Lowering the blood glucose level might ameliorate bone metabolism impairment in diabetes. The effect of SGLT2 inhibitors on bone fractures remains unclear. Evidence indicating the direct effect of SGLT2 inhibitors on fracture risk is lacking and increased falls probably contribute to fractures

    CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1

    Get PDF
    <p>Macroautophagy/autophagy is an important intracellular mechanism for the maintenance of cellular homeostasis. Here we show that the <i>CERKL</i> (ceramide kinase like) gene, a retinal degeneration (RD) pathogenic gene, plays a critical role in regulating autophagy by stabilizing SIRT1. <i>In vitro</i> and <i>in vivo</i>, suppressing CERKL results in impaired autophagy. SIRT1 is one of the main regulators of acetylation/deacetylation in autophagy. In CERKL-depleted retinas and cells, SIRT1 is downregulated. ATG5 and ATG7, 2 essential components of autophagy, show a higher degree of acetylation in CERKL-depleted cells. Overexpression of SIRT1 rescues autophagy in CERKL-depleted cells, whereas CERKL loses its function of regulating autophagy in SIRT1-depleted cells, and overexpression of CERKL upregulates SIRT1. Finally, we show that CERKL directly interacts with SIRT1, and may regulate its phosphorylation at Ser27 to stabilize SIRT1. These results show that CERKL is an important regulator of autophagy and it plays this role by stabilizing the deacetylase SIRT1.</p

    Influence of porosity on osteogenesis, bone growth and osteointegration in trabecular tantalum scaffolds fabricated by additive manufacturing

    Get PDF
    Porous tantalum implants are a class of materials commonly used in clinical practice to repair bone defects. However, the cumbersome and problematic preparation procedure have limited their widespread application. Additive manufacturing has revolutionized the design and process of orthopedic implants, but the pore architecture feature of porous tantalum scaffolds prepared from additive materials for optimal osseointegration are unclear, particularly the influence of porosity. We prepared trabecular bone-mimicking tantalum scaffolds with three different porosities (60%, 70% and 80%) using the laser powder bed fusing technique to examine and compare the effects of adhesion, proliferation and osteogenic differentiation capacity of rat mesenchymal stem cells on the scaffolds in vitro. The in vivo bone ingrowth and osseointegration effects of each scaffold were analyzed in a rat femoral bone defect model. Three porous tantalum scaffolds were successfully prepared and characterized. In vitro studies showed that scaffolds with 70% and 80% porosity had a better ability to osteogenic proliferation and differentiation than scaffolds with 60% porosity. In vivo studies further confirmed that tantalum scaffolds with the 70% and 80% porosity had a better ability for bone ingrowh than the scaffold with 60% porosity. As for osseointegration, more bone was bound to the material in the scaffold with 70% porosity, suggesting that the 3D printed trabecular tantalum scaffold with 70% porosity could be the optimal choice for subsequent implant design, which we will further confirm in a large animal preclinical model for better clinical use

    Association Between Bone Mineral Density, Bone Turnover Markers, and Serum Cholesterol Levels in Type 2 Diabetes

    Get PDF
    Purpose: The association between bone mineral density (BMD), bone turnover markers, and serum cholesterol in healthy population has already been proved. However, in patients with type 2 diabetes mellitus (T2D), it has not been adequately analyzed. In this study, we investigated the correlation between BMD, bone turnover markers, and serum cholesterol levels in people with T2D.Methods: We enrolled 1,040 men and 735 women with T2D from Zhongshan Hospital between October 2009 and January 2013. Their general condition, history of diseases and medication, serum markers, and BMD data were collected. We used logistic regression analysis to identify the association between serum cholesterol levels and BMD as well as bone turnover markers.Results: In multivariate regression analysis, we observed that in men with T2D, high high-density lipoprotein-cholesterol and total cholesterol levels were significantly associated with low total lumbar, femur neck, and total hip BMD, while low-density lipoprotein-cholesterol level was only inversely associated with total lumbar and femur neck BMD. Total cholesterol and low-density lipoprotein-cholesterol levels were also negatively associated with osteocalcin, procollagen type I N-terminal propeptide, and β-crosslaps. In women with T2D, high-density lipoprotein-cholesterol level was observed to be negatively correlated with total lumbar, femur neck, and total hip BMD, while total cholesterol and low-density lipoprotein-cholesterol levels were only associated with BMD at the total lumbar. Furthermore, total cholesterol was also negatively associated with osteocalcin, procollagen type I N-terminal propeptide, and β-crosslaps; high-density lipoprotein-cholesterol was only related to osteocalcin and parathyroid hormone, while low-density lipoprotein-cholesterol was only related to β-crosslaps in women.Conclusion: Our study suggests a significantly negative correlation between serum cholesterol levels and BMD in both men and women with T2D. The associations between serum cholesterol levels and bone turnover markers were also observed in T2D patients

    The Beneficial Effects of Bisphosphonate-enoxacin on Cortical Bone Mass and Strength in Ovariectomized Rats

    Get PDF
    Osteoporosis is a major age-related bone disease characterized by low bone mineral density and a high risk of fractures. Bisphosphonates are considered as effective agents treating osteoporosis. However, long-term use of bisphosphonates is associated with some serious side effects, which limits the widespread clinical use of bisphosphonates. Here, we demonstrate a novel type of bone-targeting anti-resorptive agent, bisphosphonate-enoxacin (BE). In this study, ovariectomized rat model was established and treated with PBS, zoledronate (50 μg/kg) and different dose of BE (5 mg/kg and 10 mg/kg), respectively. The rats subjected to sham-operation and PBS treatment were considered as control group. Then, micro-computed tomography scanning, biomechanical tests, nano-indentation test and Raman analysis were used to compare the effects of zoledronate and BE on cortical bone mass, strength, and composition in ovariectomized rats. We found that both zoledronate and BE were beneficial to cortical bone strength. Three-point bending and nano-indentation tests showed that zoledronate- and BE-treated groups had superior general and local biomechanical properties compared to the ovariectomized groups. Interestingly, it seemed that BE-treated group got a better biomechanical property than the zoledronate-treated group. Also, BE-treated group showed significantly increased proteoglycan content compared with the zoledronate-treated group. We hypothesized that the increased bone strength and biomechanical properties was due to altered bone composition after treatment with BE. BE, a new bone-targeting agent, may be considered a more suitable anti-resorptive agent to treat osteoporosis and other bone diseases associated with decreased bone mass

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Vibrational circular dichroism spectroscopy and its applications to conformational study of bifunctional chiral molecules

    No full text
    This dissertation is concerned with the solution conformations of selected bifunctional chiral molecules by experimental measurement and calculation of vibrational circular dichroism (VCD). In addition, the optical design for a Fourier transform vibrational circular dichroism (FT-VCD) instrument and improvements to this system have been evaluated. Included in the appendices of this dissertation are a comparison study of Fourier transform vibrational circular dichroism (FT-VCD) and multichannel detected Raman optical activity (ROA) and experimental VCD measurements of other chiral molecules. The instrumental development study describes modifications for the FT-VCD instrument based on a Nicolet Magna 550 FT-IR spectrometer. The mirrors have been replaced by infrared lenses in the new optical designs for this system. High signal-to-noise (S/N) ratio, minimized artifacts and flat baselines have been achieved in raw VCD spectra for single enantiomer samples obtained on the upgraded FT-VCD instrument with much less collection time than before. In the molecular conformation study, the OH-, NH- and CH-stretching absorbance and VCD spectra of (R,R)-(+)-hydrobenzoin (I), (1S,2R)-(+)-2-amino-1,2-diphenylethanol (II), (1R,2R)-(+)-1,2-diphenylethylenediamne (III), (S)-(+)-1-amino-2-propanol (IV) and (S)-(+)-2-amino-1-propanol (V), in dilute CCl\sb4 or \rm C\sb2Cl\sb4 solutions, have been measured. The mid infrared (IR) region absorbance and VCD spectra of molecules IV and V, in concentrated CDCl\sb3 solution, have also been recorded. Ab initio molecular orbital calculations of geometries, vibrational frequencies and VCD intensities far a number of conformers of these molecules have been carried out. The recently developed locally distributed origin gauge model (LDO) for VCD was used for first time to calculated the rotational strengths for the conformers of large size molecules I, II and III at a 3-21G basis set level. The calculate results have been found to give good agreement with experiment in the OH- and NH-stretching frequency regions. The solution conformations of this group of molecules have been identified through comparison of experimental and calculated results. The VCD spectra were interpreted based on previous research for small chiral diol, amino alcohol and amine molecules with the coupled oscillator model and the local chirality concepts
    • …
    corecore