1,273 research outputs found

    Domain structure-dielectric property relationship in lead-free (1−x)(Bi1/2Na1/2)TiO3xBaTiO3 ceramics

    Get PDF
    The domain morphology and crystal structure of (1−x)(Bi1/2Na1/2)TiO3xBaTiO3 lead-free piezoelectric ceramics were systematically studied with transmission electron microscopy for compositions x=0.04through 0.11. It was found that the ceramics with compositions x\u3c0.06 display a R3csymmetry with ferroelectric domains of ∌100 nm forming complex structures at room temperature. Only nanodomains with faint contrast were observed in the compositions of 0.07≀x≀0.09. The presence of weak 1/2 (ooe)superlattice diffraction spots and absence of 1/2 (ooo) ones (o stands for odd and e stands for even miller indices) seem to suggest a P4bm symmetry at room temperature. The morphotropic phase boundary composition x=0.06 showed mixed R3c and P4bm phases. Large lamellar ferroelectric domains with P4mm symmetry were found to dominate in the ceramic of x=0.11. The observed domain structure correlates extremely well with the frequency dispersion of dielectric constant at room temperature and a new concept “relaxor antiferroelectric” was proposed to describe the dielectric behavior of compositions 0.07≀x≀0.09. These results are summarized in a phase diagram for unpoled ceramics in the (1−x)(Bi1/2Na1/2)TiO3xBaTiO3binary solid solution system

    Thermal Analysis of Phase Transitions in Perovskite Electroceramics

    Get PDF
    Perovskite oxide ceramics have found wide applications in energy storage capacitors, electromechanical transducers, and infrared imaging devices due to their unique dielectric, piezoelectric, pyroelectric, and ferroelectric properties. These functional properties are intimately related to the complex displacive phase transitions that readily occur. In this study, these solid-solid phase transitions are characterized with dielectric measurements, dynamic mechanical analysis, thermomechanical analysis, and differential scanning calorimetry in an antiferroelectric lead-containing composition, Pb0.99Nb0.02[(Zr0.57Sn0.43)0.92Ti0.08]0.98O3, and in a relaxor ferrielectric lead-free composition, (Bi1/2Na1/2)0.93Ba0.07TiO3. The (Bi1/2Na1/2)0.93Ba0.07TiO3 ceramic develops strong piezoelectricity through electric field-induced phase transitions during the poling process. The combined thermal analysis techniques clearly reveal the differences in unpoled and poled ceramics

    Multi-Character Field Recognition for Arabic and Chinese Handwriting

    Get PDF
    Two methods, Symbolic Indirect Correlation (SIC) and Style Constrained Classification (SCC), are proposed for recognizing handwritten Arabic and Chinese words and phrases. SIC reassembles variable-length segments of an unknown query that match similar segments of labeled reference words. Recognition is based on the correspondence between the order of the feature vectors and of the lexical transcript in both the query and the references. SIC implicitly incorporates language context in the form of letter n-grams. SCC is based on the notion that the style (distortion or noise) of a character is a good predictor of the distortions arising in other characters, even of a different class, from the same source. It is adaptive in the sense that with a long-enough field, its accuracy converges to that of a style-specific classifier trained on the writer of the unknown query. Neither SIC nor SCC requires the query words to appear among the references

    Multi-Character Field Recognition for Arabic and Chinese Handwriting

    Get PDF
    Two methods, Symbolic Indirect Correlation (SIC) and Style Constrained Classification (SCC), are proposed for recognizing handwritten Arabic and Chinese words and phrases. SIC reassembles variable-length segments of an unknown query that match similar segments of labeled reference words. Recognition is based on the correspondence between the order of the feature vectors and of the lexical transcript in both the query and the references. SIC implicitly incorporates language context in the form of letter n-grams. SCC is based on the notion that the style (distortion or noise) of a character is a good predictor of the distortions arising in other characters, even of a different class, from the same source. It is adaptive in the sense that with a long-enough field, its accuracy converges to that of a style-specific classifier trained on the writer of the unknown query. Neither SIC nor SCC requires the query words to appear among the references

    Ultrawideband Transceiver Design Using Channel Phase Precoding

    Full text link
    • 

    corecore