7,124 research outputs found
Hyperbolic Interaction Model For Hierarchical Multi-Label Classification
Different from the traditional classification tasks which assume mutual
exclusion of labels, hierarchical multi-label classification (HMLC) aims to
assign multiple labels to every instance with the labels organized under
hierarchical relations. Besides the labels, since linguistic ontologies are
intrinsic hierarchies, the conceptual relations between words can also form
hierarchical structures. Thus it can be a challenge to learn mappings from word
hierarchies to label hierarchies. We propose to model the word and label
hierarchies by embedding them jointly in the hyperbolic space. The main reason
is that the tree-likeness of the hyperbolic space matches the complexity of
symbolic data with hierarchical structures. A new Hyperbolic Interaction Model
(HyperIM) is designed to learn the label-aware document representations and
make predictions for HMLC. Extensive experiments are conducted on three
benchmark datasets. The results have demonstrated that the new model can
realistically capture the complex data structures and further improve the
performance for HMLC comparing with the state-of-the-art methods. To facilitate
future research, our code is publicly available
Bionic Design of the Surface Morphology of Rubber Bush Covered on Driving Drums
Driving drum uses friction force to transfer power in belt conveyor. By means of bionic technology, the surface morphology of driving drum's flexible cladding was researched to increase the frictional traction force in this paper. Taking tree frog and katydid as biological prototypes, the structural features and adhesion mechanisms of their epidermal pad attachment organs were studied. Imitating the shape and structure of the epidermal pads, based on the principle of function bionics, four new surface morphologies of drum’s bush were designed. The behavior of the bionic bush contacting to the belt was simulated with finite element analysis software. The results of contact analysis show that the bionic drum’s bushes can generate embedding and interlocking effect during the contact process. The contact form can be changed from plane or cambered surface contact to meshing contact to enhance the frictional traction of drums. Keywords: Epidermal pad; Surface morphology; Bionic design; Finite element analysis; Frictio
Substructure and Boundary Modeling for Continuous Action Recognition
This paper introduces a probabilistic graphical model for continuous action
recognition with two novel components: substructure transition model and
discriminative boundary model. The first component encodes the sparse and
global temporal transition prior between action primitives in state-space model
to handle the large spatial-temporal variations within an action class. The
second component enforces the action duration constraint in a discriminative
way to locate the transition boundaries between actions more accurately. The
two components are integrated into a unified graphical structure to enable
effective training and inference. Our comprehensive experimental results on
both public and in-house datasets show that, with the capability to incorporate
additional information that had not been explicitly or efficiently modeled by
previous methods, our proposed algorithm achieved significantly improved
performance for continuous action recognition.Comment: Detailed version of the CVPR 2012 paper. 15 pages, 6 figure
The peculiar filamentary HI structure of NGC 6145
In this paper, we report the peculiar HI morphology of the cluster spiral
galaxy NGC 6145, which has a 150 kpc HI filament on one side that is nearly
parallel to its major axis. This filament is made up of several HI clouds and
the diffuse HI gas between them, with no optical counterparts. We compare its
HI distribution with other one-sided HI distributions in the literature, and
find that the overall HI distribution is very different from the typical tidal
and ram-pressure stripped HI shape, and its morphology is inconsistent with
being a pure accretion event. Only about 30% of the total HI gas is anchored on
the stellar disk, while most of HI gas forms the filament in the west. At a
projected distance of 122 kpc, we find a massive elliptical companion (NGC
6146) with extended radio emission, whose axis points to an HI gap in NGC 6145.
The velocity of the HI filament shows an overall light-of- sight motion of 80
to 180 km/s with respect to NGC 6145. Using the long-slit spectra of NGC 6145
along its major stellar axis, we find that some outer regions show enhanced
star formation, while in contrast, almost no star formation activities are
found in its center (less than 2 kpc). Pure accretion, tidal or ram-pressure
stripping is not likely to produce the observed HI filament. An alternative
explanation is the jet-stripping from NGC 6146, although direct evidence for a
jet-cold gas interaction has not been found.Comment: 12 pages, 6 figures; Accepted for publication in A
- …