435 research outputs found

    Heavily electron-doped electronic structure and isotropic superconducting gap in AxFe2Se2 (A=K,Cs)

    Full text link
    The low energy band structure and Fermi surface of the newly discovered superconductor, AxFe2Se2 (A=K,Cs), have been studied by angle-resolved photoemission spectroscopy. Compared with iron pnictide superconductors, AxFe2Se2 (A=K,Cs) is the most heavily electron-doped with Tc~30 K. Only electron pockets are observed with an almost isotropic superconducting gap of ~10.3 meV, while there is no hole Fermi surface near the zone center, which indicates the inter-pocket hopping or Fermi surface nesting is not a necessary ingredient for the unconventional superconductivity in iron-based superconductors. Thus, the sign changed s±_\pm pairing symmetry, a leading candidate proposed for iron-based superconductors, becomes conceptually irrelevant in describing the superconducting state here. A more conventional s-wave pairing is a better description.Comment: 4 pages, 4 figures, published online in Nature Materials 201

    Improving corporate governance in state-owned corporations in China: which way forward?

    Get PDF
    This article discusses corporate governance in China. It outlines the basic agency problem in Chinese listed companies and questions the effectiveness of the current mechanisms employed to improve their standards of governance. Importantly, it considers alternative means through which corporate practice in China can be brought into line with international expectations and stresses the urgency with which this task must be tackled. It concludes that regulators in China must construct a corporate governance model which is compatible with its domestic setting and not rush to adopt governance initiatives modelled on those in cultures which are fundamentally different in the hope of also reproducing their success

    Lysine-Rich Extracellular Rings Formed by hβ2 Subunits Confer the Outward Rectification of BK Channels

    Get PDF
    The auxiliary β subunits of large-conductance Ca2+-activated K+ (BK) channels greatly contribute to the diversity of BK (mSlo1 α) channels, which is fundamental to the adequate function in many tissues. Here we describe a functional element of the extracellular segment of hβ2 auxiliary subunits that acts as the positively charged rings to modify the BK channel conductance. Four consecutive lysines of the hβ2 extracellular loop, which reside sufficiently close to the extracellular entryway of the pore, constitute three positively charged rings. These rings can decrease the extracellular K+ concentration and prevent the Charybdotoxin (ChTX) from approaching the extracellular entrance of channels through electrostatic mechanism, leading to the reduction of K+ inflow or the outward rectification of BK channels. Our results demonstrate that the lysine rings formed by the hβ2 auxiliary subunits influences the inward current of BK channels, providing a mechanism by which current can be rapidly diminished during cellular repolarization. Furthermore, this study will be helpful to understand the functional diversity of BK channels contributed by different auxiliary β subunits

    Association of Adiponectin SNP+45 and SNP+276 with Type 2 Diabetes in Han Chinese Populations: A Meta-Analysis of 26 Case-Control Studies

    Get PDF
    Recently, many studies have reported that the SNP+45(T>G) and SNP+276(G>T) polymorphisms in the adiponectin gene are associated with type 2 diabetes (T2DM) in the Chinese Han population. However, the previous studies yielded many conflicting results. Thus, a meta-analysis of the association of the adiponectin gene with T2DM in the Chinese Han population is required. In the current study, we first determined the distribution of the adiponectin SNP+276 polymorphism in T2DM and nondiabetes (NDM) control groups. Our results suggested that the genotype and allele frequencies for SNP+276 did not differ significantly between the T2DM and NDM groups. Then, a meta-analysis of 23 case-control studies of SNP+45, with a total of 4161 T2DM patients and 3709 controls, and 11 case-control studies of SNP+276, with 2533 T2DM patients and 2212 controls, was performed. All subjects were Han Chinese. The fixed-effects model and random-effects model were applied for dichotomous outcomes to combine the results of the included studies. The results revealed a trend towards an increased risk of T2DM for the SNP+45G allele as compared with the SNP+45T allele (OR = 1.34; 95% CI, 1.11–1.62; P<0.01) in the Chinese Han population. However, there was no association between SNP+276 and T2DM (OR = 0.90; 95% CI, 0.73–1.10; P = 0.31). The results of our association study showed there was no association between the adiponectin SNP+276 polymorphism and T2DM in the Yunnan Han population. The meta-analysis results suggested that the SNP+45G allele might be a susceptibility allele for T2DM in the Chinese Han population. However, we did not observe an association between SNP+276 and T2DM

    Observation of superconductivity at 30 K~46 K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb, and Eu)

    Get PDF
    New iron selenide superconductors by intercalating smaller-sized alkali metals (Li, Na) and alkaline earths using high-temperature routes have been pursued ever since the discovery of superconductivity at about 30 K in KFe2Se2, but all have failed so far. Here we demonstrate that a series of superconductors with enhanced Tc=30~46 K can be obtained by intercalating metals, Li, Na, Ba, Sr, Ca, Yb, and Eu in between FeSe layers by the ammonothermal method at room temperature. Analysis on their powder X-ray diffraction patterns reveals that all the main phases can be indexed based on body-centered tetragonal lattices with a~3.755-3.831 {\AA} while c~15.99-20.54 {\AA}. Resistivities show the corresponding sharp transitions at 45 K and 39 K for NaFe2Se2 and Ba0.8Fe2Se2, respectively, confirming their bulk superconductivity. These findings provide a new starting point for studying the properties of these superconductors and an effective synthetic route for the exploration of new superconductors as well.Comment: 22 pages, 5 figure

    Efficient Differentiation of Embryonic Stem Cells into Mesodermal Precursors by BMP, Retinoic Acid and Notch Signalling

    Get PDF
    The ability to direct differentiation of mouse embryonic stem (ES) cells into specific lineages not only provides new insights into the pathways that regulate lineage selection but also has translational applications, for example in drug discovery. We set out to develop a method of differentiating ES cells into mesodermal cells at high efficiency without first having to induce embryoid body formation. ES cells were plated on a feeder layer of PA6 cells, which have membrane-associated stromal-derived inducing activity (SDIA), the molecular basis of which is currently unknown. Stimulation of ES/PA6 co-cultures with Bone Morphogenetic Protein 4 (BMP4) both favoured self-renewal of ES cells and induced differentiation into a Desmin and Nestin double positive cell population. Combined stimulation with BMP4 and all-trans Retinoic Acid (RA) inhibited self-renewal and resulted in 90% of cells expressing Desmin and Nestin. Quantitative reverse transcription-polymerase chain reaction (qPCR) analysis confirmed that the cells were of mesodermal origin and expressed markers of mesenchymal and smooth muscle cells. BMP4 activation of a MAD-homolog (Smad)-dependent reporter in undifferentiated ES cells was attenuated by co-stimulation with RA and co-culture with PA6 cells. The Notch ligand Jag1 was expressed in PA6 cells and inhibition of Notch signalling blocked the differentiation inducing activity of PA6 cells. Our data suggest that mesodermal differentiation is regulated by the level of Smad activity as a result of inputs from BMP4, RA and the Notch pathway

    Fine mapping of qSTV11KAS, a major QTL for rice stripe disease resistance

    Get PDF
    Rice stripe disease, caused by rice stripe virus (RSV), is one of the most serious diseases in temperate rice-growing areas. In the present study, we performed quantitative trait locus (QTL) analysis for RSV resistance using 98 backcross inbred lines derived from the cross between the highly resistant variety, Kasalath, and the highly susceptible variety, Nipponbare. Under artificial inoculation in the greenhouse, two QTLs for RSV resistance, designated qSTV7 and qSTV11KAS, were detected on chromosomes 7 and 11 respectively, whereas only one QTL was detected in the same location of chromosome 11 under natural inoculation in the field. The stability of qSTV11KAS was validated using 39 established chromosome segment substitution lines. Fine mapping of qSTV11KAS was carried out using 372 BC3F2:3 recombinants and 399 BC3F3:4 lines selected from 7,018 BC3F2 plants of the cross SL-234/Koshihikari. The qSTV11KAS was localized to a 39.2 kb region containing seven annotated genes. The most likely candidate gene, LOC_Os11g30910, is predicted to encode a sulfotransferase domain-containing protein. The predicted protein encoded by the Kasalath allele differs from Nipponbare by a single amino acid substitution and the deletion of two amino acids within the sulfotransferase domain. Marker-resistance association analysis revealed that the markers L104-155 bp and R48-194 bp were highly correlated with RSV resistance in the 148 landrace varieties. These results provide a basis for the cloning of qSTV11KAS, and the markers may be used for molecular breeding of RSV resistant rice varieties

    A Large Iron Isotope Effect in SmFeAsO1-xFx and Ba1-xKxFe2As2

    Full text link
    The recent discovery of superconductivity in oxypnictides with the critical temperature (TC) higher than McMillan limit of 39 K (the theoretical maximum predicted by Bardeen-Cooper-Schrieffer (BCS) theory) has generated great excitement. Theoretical calculations indicate that the electron-phonon interaction is not strong enough to give rise to such high transition temperatures, while strong ferromagnetic/antiferromagnetic fluctuations have been proposed to be responsible. However, superconductivity and magnetism in pnictide superconductors show a strong sensitivity to the lattice, suggesting a possibility of unconventional electron-phonon coupling. Here we report the effect of oxygen and iron isotopic mass on Tc and the spin-density wave (SDW) transition temperature (TSDW) in SmFeAsO1-xFx and Ba1-xKxFe2As2 systems. The results show that oxygen isotope effect on TC and TSDW is very little, while the iron isotope exponent alpha=-dlnTc/dlnM is about 0.35, being comparable to 0.5 for the full isotope effect. Surprisingly, the iron isotope exchange shows the same effect on TSDW as TCc These results indicate that electron-phonon interaction plays some role in the superconducting mechanism, but simple electron-phonon coupling mechanism seems to be rather unlikely because a strong magnon-phonon coupling is included. Sorting out the interplay between the lattice and magnetic degrees of freedom is a key challenge for understanding the mechanism of high-TC superconductivity.Comment: 22 pages, 7 figur

    Profiling of the Tetraspanin CD151 Web and Conspiracy of CD151/Integrin β1 Complex in the Progression of Hepatocellular Carcinoma

    Get PDF
    Tetraspanin CD151 has been implicated in metastasis through forming complexes with different molecular partners. In this study, we mapped tetraspanin web proteins centered on CD151, in order to explore the role of CD151 complexes in the progression of hepatocellular carcinoma (HCC). Immunoprecipitation was used to isolate tetraspanin complexes from HCCLM3 cells using a CD151 antibody, and associated proteins were identified by mass spectrometry. The interaction of CD151 and its molecular partners, and their roles in invasiveness and metastasis of HCC cells were assayed through disruption of the CD151 network. Finally, the clinical implication of CD151 complexes in HCC patients was also examined. In this study, we identified 58 proteins, characterized the tetraspanin CD151 web, and chose integrin β1 as a main partner to further investigate. When the CD151/integrin β1 complex in HCC cells was disrupted, migration, invasiveness, secretion of matrix metalloproteinase 9, and metastasis were markedly influenced. However, both CD151 and integrin β1 expression were untouched. HCC patients with high expression of CD151/integrin β1 complex had the poorest prognosis of the whole cohort of patients. Together, our data show that CD151 acts as an important player in the progression of HCC in an integrin β1-dependent manner
    corecore