10,875 research outputs found

    Energy Dissipation Criteria for Surface Contact Damage Evaluation

    Get PDF

    Electron acceleration by cascading reconnection in the solar corona I Magnetic gradient and curvature effects

    Full text link
    Aims: We investigate the electron acceleration in convective electric fields of cascading magnetic reconnection in a flaring solar corona and show the resulting hard X-ray (HXR) radiation spectra caused by Bremsstrahlung for the coronal source. Methods: We perform test particle calculation of electron motions in the framework of a guiding center approximation. The electromagnetic fields and their derivatives along electron trajectories are obtained by linearly interpolating the results of high-resolution adaptive mesh refinement (AMR) MHD simulations of cascading magnetic reconnection. Hard X-ray (HXR) spectra are calculated using an optically thin Bremsstrahlung model. Results: Magnetic gradients and curvatures in cascading reconnection current sheet accelerate electrons: trapped in magnetic islands, precipitating to the chromosphere and ejected into the interplanetary space. The final location of an electron is determined by its initial position, pitch angle and velocity. These initial conditions also influence electron acceleration efficiency. Most of electrons have enhanced perpendicular energy. Trapped electrons are considered to cause the observed bright spots along coronal mass ejection CME-trailing current sheets as well as the flare loop-top HXR emissions.Comment: submitted to A&

    Advances in Thermoelectric Energy Conversion Nanocomposites

    Get PDF

    Nanocomposites for Photovoltaic Energy Conversion

    Get PDF

    Advances in Photoelectrochemical Fuel Cell Research

    Get PDF

    Multi-task multi-modality SVM for early COVID-19 Diagnosis using chest CT data

    Get PDF
    Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID 19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains activePublishe

    Simulation for Scanning Electron Microscopy

    Get PDF
    Simulations of images of surface steps obtained by high energy reflection electron microscopy are presented. It is shown that double images of simple steps, with no associated strain field, may occur when surface resonance conditions are established. Accurate calculation of image intensity requires large calculations and care is needed in relating the computed wave functions to those occurring for a semi-infinite incident wave. Estimates of the time to compute accurate wavefunctions are given and it is shown that they are reasonable for modem fast computers

    Positive exchange bias in ferromagnetic La0.67Sr0.33MnO3 / SrRuO3 bilayers

    Full text link
    Epitaxial La0.67Sr0.33MnO3 (LSMO)/ SrRuO3 (SRO) ferromagnetic bilayers have been grown on (001) SrTiO3 (STO) substrates by pulsed laser deposition with atomic layer control. We observe a shift in the magnetic hysteresis loop of the LSMO layer in the same direction as the applied biasing field (positive exchange bias). The effect is not present above the Curie temperature of the SRO layer (), and its magnitude increases rapidly as the temperature is lowered below . The direction of the shift is consistent with an antiferromagnetic exchange coupling between the ferromagnetic LSMO layer and the ferromagnetic SRO layer. We propose that atomic layer charge transfer modifies the electronic state at the interface, resulting in the observed antiferromagnetic interfacial exchange coupling.Comment: accepted to Applied Physics Letter
    • …
    corecore