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A B S T R A C T

In the early diagnosis of the Coronavirus disease (COVID-19), it is of great importance for
either distinguishing severe cases from mild cases or predicting the conversion time that mild
cases would possibly convert to severe cases. This study investigates both of them in a unified
framework by exploring the problems such as slight appearance difference between mild cases
and severe cases, the interpretability, the High Dimension and Low Sample Size (HDLSS)
data, and the class imbalance. To this end, the proposed framework includes three steps: (1)
feature extraction which first conducts the hierarchical segmentation on the chest Computed
Tomography (CT) image data and then extracts multi-modality handcrafted features for each
segment, aiming at capturing the slight appearance difference from different perspectives; (2)
data augmentation which employs the over-sampling technique to augment the number of
samples corresponding to the minority classes, aiming at investigating the class imbalance
problem; and (3) joint construction of classification and regression by proposing a novel Multi-
task Multi-modality Support Vector Machine (MM-SVM) method to solve the issue of the HDLSS
data and achieve the interpretability. Experimental analysis on two synthetic and one real
COVID-19 data set demonstrated that our proposed framework outperformed six state-of-the-art
methods in terms of binary classification and regression performance.

. Introduction

Coronavirus disease 2019 (aka COVID-19) has caused more than 170 million confirmed cases and over 3 million confirmed
eaths as of June 2021. Recently, a large number of interests have been focused on designing computer-aided diagnosis methods to
onduct early COVID-19 diagnosis for reducing the clinician’s workloads and taking care of the confirmed patients early. To this end,
edical imaging data such as Real-time reverse Transcription Polymerase Chain Reaction (RT-PCR), chest Computed Tomography

CT) imaging data, and chest X-ray imaging data, have widely been applied to COVID-19 diagnosis such as segmentation (Fan,
t al., 2020; Xie, Jacobs, Charbonnier, & van Ginneken, 2020) and diagnosis (Kang, et al., 2020; Ouyang, et al., 2020). The machine
earning technique is thus becoming one of the effective computer-aided diagnosis methods for the diagnosis and prediction of the
OVID-19 disease using medical imaging data.

In the study of early COVID-19 diagnosis, Fang et al. employed Support Vector Machine (SVM) to separate the COVID-19 patients
rom other pneumonia patients (Fang, et al., 2020). Wang et al. used deep learning methods to first generate deep features from
he chest CT images and then conduct the COVID-19 diagnosis using the decision tree and Adaboost (Wang, et al., 2020). In real
pplications, it is also crucial to predict the development of patient disease by constructing regression models to evaluate the patient’s
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Fig. 1. The flowchart of the proposed framework with three steps: (1) Feature extraction for extracting three set of handcrafted features; (2) Data augmentation
for generating the synthetic data for the minority class, i.e., severe COVID-19 cases; (3) The proposed Multi-task Multi-modality SVM (MM-SVM) method for
jointly conducting feature selection, classification task, and regression task.

condition (Zhang, Lai, et al., 2019). For example, Qi et al. employed linear regression and random forest to predict the number of
days for COVID-19 patients staying in hospitals (Qi, et al., 2020) and Hamzah et al. proposed to forecast the large-scale outbreak
time on the global world (Hamzah, et al., 2020). Chimmula et al. used the Long Short-Term Memory (LSTM) framework to forecast
the future confirmed COVID-19 cases in Canada (Chimmula & Zhang, 2020) and Hu et al. proposed a modified stacked autoencoder
model to predict the confirmed COVID-19 cases (Hu, Ge, Jin, & Xiong, 2020). Furthermore, the previous study showed that each
task may have individual characteristics different from others in multi-task learning (Gan, et al., 2021; Zhang, Liu, et al., 2019),
which can thus improve the diagnosis effectiveness with the help of complementary information across all tasks. For example, Bai
et al. proposed an LSTM model to identify severe patients as well as predict the patients with potentially malignant progression (Bai,
et al., 2020). Zhu et al. integrated the logistic regression with the linear regression to conduct joint classification and regression for
early diagnosis of COVID-19 disease (Zhu, et al., 2021).

This paper focuses on designing a new multi-task model to jointly distinguish mild COVID-19 cases from severe cases and predict
the conversion time that mild case converts to severe case using the chest CT scans data, by taking into account the importance and
the challenges for early diagnosis of COVID-19 disease. Specifically, the confirmed COVID-19 cases can be further categorized into
two subgroups, i.e., mild cases and severe cases. If the severe cases can correctly be distinguished from mild cases, mild cases can
stay at home while severe cases should be treated at hospitals. As a result, the clinicians’ workloads will be significantly reduced,
and severe cases can be treated in time. However, it is challenging to identify mild cases from severe cases and simultaneously
predict the conversion time.

Firstly, COVID-19 cases and Healthy Control (HC) are easy to identify since their appearance differences are significant in the
chest CT scans based on previous literature (Shi, Wang, et al., 2020; Tang, et al., 2020). However, it is difficult to identify between
mild cases and severe cases since their differences in infected lesions are usually small in the chest CT scans, as well as their
appearances are similar to other pneumonia with a very slight difference (Guan, et al., 2020). Second, the limited positive subjects
are can be used for early diagnosis of COVID-19, but they may lead to some issues, such as the class imbalance and the high
dimension and low sample size (HDLSS). For example, the classification models developed for imbalanced data sets often classify
the minority class as the majority class to output high false negatives (i.e., low sensitivity) (Zhu, et al., 2021). Moreover, the HDLSS
data indicate more features in the data set than the number of subjects, which is often the case in medical imaging data (Hao, Zhou,
& Guo, 2020; Hu, et al., 2021). The HDLSS data make it difficult to construct effective learning models and easily result in the
issue of the curse of dimensionality for data analysis (Peng, et al., 2021; Shen, Zhu, Zheng, & Zhu, 2020; Zhu, Zhang, Zhu, Zhu, &
Gao, 2020). Third, it is necessary to conduct a unified framework for both classification and regression/prediction, which not only
obtains mutual promotion between different tasks, but it also achieves the interpretability (Zhu, Ma, Yuan, & Zhu, 2021; Zhu, et al.,
2021).

To address aforementioned issues, in this paper, we investigate a new framework for early diagnosis of COVID-19, which jointly
distinguish mild COVID-19 cases from severe cases and also predict the conversion time that the mild case will convert to the severe
case using the chest CT scans data. To this end, we first segment the whole lung into 26 parts based on both the infection locations
and the spreading patterns of the COVID-19 disease to extract three kinds of handcrafted features for each part, aiming at detecting
infected lesions and capturing the slight appearance difference between mild cases and severe cases. Then, we employ the Synthetic
Minority Over-sampling TEchnique (SMOTE) (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) to generate new samples for the minority
class (i.e., severe cases in this work) to solve the issue of the class imbalance. We further propose a new Multi-task Multi-modality
Support Vector Machine (MM-SVM) method to extract the common information across multi-modality data as well as multiple tasks
to simultaneously capture the slight appearance difference as well as to conduct feature selection, disease diagnosis, and conversion
time prediction.

Compared to previous methods, the contributions of the proposed method are listed as follows.

• Our proposed framework simultaneously solves various issues such as the slight appearance difference between mild cases and
severe cases, the interpretability, the HDLSS issue, the class imbalance problem, and the joint classification and regression.
Previous methods only focused on a subset of the above issues. For example, Zhu et al. proposed to solve the class imbalance
problem, the issue of the HDLSS data, and the joint classification and regression (Zhu, et al., 2021). Besides, Hu et al. conducted
a model to solve the interpretability, the class imbalance problem (Hu, et al., 2021). Moreover, Kang, et al. (2020) and Wu,
2

et al. (2020) employed multi-modality data to leave the issues (i.e., the class imbalance problem and the interpretability) alone.
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• This paper proposed a new SVM framework to overcome the issues of early diagnosis of COVID-19. To our knowledge, it
is the first work to design the SVM framework to simultaneously conduct multi-task learning and multi-modality learning
for medical image analysis. In the literature, Zhang et al. proposed to separately conduct feature selection and disease
diagnosis (Zhang, Shen, Alzheimer’s Disease Neuroimaging Initiative, et al., 2012). Moreover, our experimental results show
the effectiveness of our proposed framework by outperforming all comparison methods, in terms of binary classification and
prediction performance.

In this paper, we denote matrices, vectors, and scalars, respectively, as boldface upper-case letters, boldface lower-case letters,
nd normal italic letters, as well as denote the Frobenius norm and 𝓁2,1-norm of a matrix 𝐌, respectively, as ‖𝐌‖𝐹 =

√

∑

𝑖,𝑗 𝑚
2
𝑖,𝑗

and ‖𝐌‖2,1 =
∑

𝑖

√

∑

𝑗 𝑚
2
𝑖,𝑗 . We further denote the diagonal operator, the transpose operator, the trace operator, and the inverse of

he matrix 𝐌 as 𝑑𝑖𝑎𝑔(𝐌), 𝐌𝑇 , 𝑡𝑟(𝐌), and 𝐌−1.
More specifically, given the multi-modality data 𝐗 = {𝐗(1),… ,𝐗(𝑉 )} and each modality 𝐗(𝑣) ∈ R𝑑(𝑣)×𝑛 where 𝑉 , 𝑑(𝑣), and 𝑛,

respectively, are the number of modalities, the number of features and the number of samples for the v-th modality data, we denote
𝐱(𝑣)𝑖,⋅ , 𝐱(𝑣)⋅,𝑗 , and 𝐱(𝑣)𝑖,𝑗 , respectively, as the 𝑖th row, the 𝑗th column, and the element in the 𝑖th row and the 𝑗th column. We also denote
𝐲 ∈ {+1,−1}1×𝑛 and 𝐳 ∈ R1×𝑛 as the ground truth of the classification task and the ground truth of the regression task, respectively.

The proposed framework shown in Fig. 1 involves three steps, i.e., (1) feature extraction which first segments the chest CT scans
with hierarchical structures for detecting the slight appearance difference between two classes and then extracts multi-modality
handcrafted features for each segment; (2) data augmentation which solves the issue of the class imbalance by augmenting the
minority samples; and (3) the MM-SVM method which jointly conducts feature selection, the classification task, and the regression
task to achieve the interpretability and solve the issues of the HDLSS data.

1.1. Feature extraction

It needs to be stated that all the imaging data pre-processing (Shan, et al., 2020; Shi, et al., 2020) and handcrafted feature
extraction are processed by experts in pneumonia to guarantee the rationality and reliability of the obtained data for model
construction (Song, et al., 2014). Moreover, different from previous deep learning models (Kang, et al., 2020; Wu, et al., 2020)
which take the whole image data as the input to output deep representations, the advantages of segmenting an image into multiple
semantic regions can be summarized as follows, (1) multiple semantic regions division are obtained by experts in pneumonia to
guarantee the rationality and reliability of the obtained data. (2) Each COVID-19 chest CT image is segmented into multiple semantic
regions based on the disease characteristics, such as infection locations and spreading patterns. (3) Each handcrafted feature obtained
from the multiple semantic regions is guaranteed to be interpretable.

1.2. Data augmentation

The class imbalance problem implies that the distribution of the samples/subjects across all classes is biased or skewed (Chawla
et al., 2002; He & Garcia, 2009). Moreover, the sample numbers in different classes can vary from a slight bias to a severe imbalance,
e.g., 100 severe cases vs. 322 mild cases in this work. The class imbalance problem poses a challenge for data analysis as most
machine learning methods were designed assuming an equal number of subjects for each class (Liu, Wu, & Zhou, 2008). As a
consequence, the minority class has poor prediction performance because these methods directly predict the minority class as the
labels of the majority class to result in high prediction accuracy but high false-negative (i.e., low sensitivity). However, in real
applications, the minority class is more important, compared to the majority class (Galar, Fernandez, Barrenechea, Bustince, &
Herrera, 2011; Longadge & Dongre, 2013), e.g., distinguishing severe cases from mild cases.

In the literature, the solutions to the class imbalance problem can be categorized into three types, i.e., data pre-processing
methods (Zhu et al., 2020), algorithm methods (Zhu, Yang, Zhang, & Zhang, 2019), and sample selection methods (Shen et al.,
2020; Yuan, Zhong, Lei, Zhu, & Hu, 2021). Data pre-processing methods use the resampling techniques to generate synthetic
data for the minority classes or reduce the samples of the majority classes, such as the undersampling method, the oversampling
method (e.g., Synthetic Minority Oversampling TEchnique (SMOTE)). Algorithm methods focus on designing new machine learning
techniques to directly deal with the class imbalance problem, such as cost-sensitive learning, one-class classification, and ensemble
methods. Sample selection methods employ the self-paced learning methods or the half-quadratic optimization (Shen et al., 2020)
to assign less important samples in the majority classes with small or zero weights.

In this work, considering the issue of the HDLSS data and the class imbalance problem, we employ the oversampling technique
(i.e., SMOTE Chawla et al., 2002) to generate synthetic samples for the minority class. More specifically, SMOTE adds the nearest
neighbors of each minority sample to augment the samples of the minority classes by the following steps: (1) calculating the 𝑘 nearest
neighbors for each minority sample 𝐱. (2) generating a new minority sample 𝐱′ for each minority sample 𝐱 by 𝐱′ = 𝐱 + 𝜏|𝐱 − 𝐱𝑘|
where 𝜏 is a random number between 0 and 1, and 𝐱𝑘 is randomly selected from the nearest neighbors of 𝐱. For example, in this
work, we generate 100 × 2 synthetic minority samples to have a final balanced data set with 300 minority samples and 322 majority
3

samples for the real COVID-19 dataset.
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1.3. Multi-task multi-modality SVM

1.3.1. SVM for classification and regression
SVM was designed to search the maximal margin to conduct the binary classification, aka Support Vector Classification (SVC),

y the following objective function (Cortes & Vapnik, 1995).

min
𝐰,𝑏𝑤

1
2‖𝐰‖

2 + 𝐶1

𝑛
∑

𝑖=1
𝜉𝑖

𝑠.𝑡., 𝑦𝑖((𝐱𝑇𝑖,⋅𝐰 + 𝑏𝑤)) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0, 𝑖 = 1,… , 𝑛.
(1)

where 𝐰 ∈ R𝑑 is the weight vector, 𝑏𝑤 is the bias value, 𝝃 is the slack variable, 𝐲 = [𝑦1,… , 𝑦𝑛] is the ground truth of the labels, and
𝐶1 is the tuning parameter.

The characteristics (e.g., the sparse solution and the good generalization) make the SVM available for solving the regression
problems (Vapnik, 1999), i.e., Support Vector Regression (SVR). Specifically, defining the convex 𝜖-insensitive loss function and the
slack variables (e.g., 𝜼 and 𝜼̂) to reduce the influence of outliers, the objective function of SVR is formulated as follows:

min
𝐮,𝑏𝑢

1
2‖𝐮‖

2 + 𝐶2

𝑛1
∑

𝑗=1
(𝜂𝑗 , 𝜂̂𝑗 )

𝑠.𝑡., (𝐱̃𝑇𝑗,⋅𝐮 + 𝑏𝑢) − 𝑧𝑗 ≤ 𝜖 + 𝜂𝑗 ,
𝑧𝑗 − (𝐱̃𝑇𝑗,⋅𝐮 + 𝑏𝑢) ≤ 𝜖 + 𝜂̂𝑗 ,
𝜂𝑗 , 𝜂̂𝑗 ≥ 0, 𝑗 = 1,… , 𝑛1.

(2)

where 𝐮 is the weight vector and 𝑏𝑢 is the bias value. 𝐳 = [𝑧1,… , 𝑧𝑛1 ] is the ground truth and 𝐶2 is the tuning parameter. In particular,
we denote 𝑛, 𝑛1, and 𝑛2, respectively, as the number of the whole data set for the classification task (i.e., 𝑛 = 622), the original data
set for the regression task (i.e., 𝑛1 = 422), and the augmented data set obtained by the SMOTE method in Section 1.2 (i.e., 𝑛2 = 200),
i.e., 𝑛 = 𝑛1 + 𝑛2. Moreover, we denote 𝐗̃(𝑣) ∈ R𝑑(𝑣)×𝑛1 and 𝐗̂(𝑣) ∈ R𝑑(𝑣)×𝑛2 (𝑣 = 1,… , 𝑉 ), respectively, as the v-th type feature matrix
of the original data set and the augmented data set, i.e., 𝐗(𝑣) = [𝐗̃(𝑣); 𝐗̂(𝑣)] ∈ R𝑑(𝑣)×𝑛.

1.3.2. Proposed objective function
Given multi-modality data 𝐗 = {𝐗(1),… ,𝐗(𝑉 )}, we integrate Eq. (1) with Eq. (2) to conduct joint classification and regression,

i.e., multi-task learning, on the multi-modality data by proposing the objective function as follows:

min
𝐰(𝑣) ,𝐮(𝑣) ,𝑏𝑤 ,𝑏𝑢

𝐶1

𝑛
∑

𝑖=1
𝜉𝑖 + 𝐶2

𝑛1
∑

𝑗=1
(𝜂𝑗 , 𝜂̂𝑗 )

+ 𝜆‖[𝐰(1),… ,𝐰(𝑉 ),𝐮(1),… ,𝐮(𝑉 )]‖2,1

𝑠.𝑡., 𝑦𝑖(
𝑉
∑

𝑣=1
𝛼𝑣(𝐱

(𝑣)𝑇
𝑖,⋅ 𝐰(𝑣) + 𝑏𝑤)) ≥ 1 − 𝜉𝑖,

𝑉
∑

𝑣=1
𝛽𝑣(𝐱̃

(𝑣)𝑇
𝑗,⋅ 𝐮(𝑣) + 𝑏𝑢) − 𝑧𝑗 ≤ 𝜖 + 𝜂𝑗 ,

𝑧𝑗 −
𝑉
∑

𝑣=1
𝛽𝑣(𝐱̃

(𝑣)𝑇
𝑗,⋅ 𝐮(𝑣) + 𝑏𝑢) ≤ 𝜖 + 𝜂̂𝑗 ,

𝑉
∑

𝑣=1
𝛼𝑣 = 1,

𝑉
∑

𝑣=1
𝛽𝑣 = 1, 𝛼𝑣, 𝛽𝑣 ≥ 0,

𝜉𝑖, 𝜂𝑗 , 𝜂̂𝑗 ≥ 0, 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑛1.

(3)

where 𝜶 = [𝛼1,… , 𝛼𝑣,… , 𝛼𝑉 ] and 𝜷 = [𝛽1,… , 𝛽𝑣,… , 𝛽𝑉 ], respectively, is the weight vector for the classification task and the
regression task. It is noteworthy that we use the original data set to conduct the regression task as the class balance problem
only affects the classification task.

Although it is a reasonable approach to integrate suitable divisor weights 𝛼𝑣 and 𝛽𝑣 with different views for the specific task, it
is a time-consuming process and needs abundant prior knowledge. Inspired by the literature (Li, Chen, Nie, & Wang, 2017; Wang,
Nie, Wang, Hu, & Li, 2019), we propose to adjust the weights automatically according to obtained optimal variables and we have

𝑉
∑

𝑣=1
𝛼𝑣(𝐱

(𝑣)𝑇
𝑖,⋅ 𝐰(𝑣) + 𝑏𝑤) = 1,

𝑉
∑

𝑣=1
𝛼𝑣 = 1, 𝛼𝑣 ≥ 0, 𝑖 = 1,… , 𝑛.

(4)

and
𝑉
∑

𝑣=1
𝛽𝑣(𝐱̃

(𝑣)𝑇
𝑖,⋅ 𝐮(𝑣) + 𝑏𝑢) = 1,

𝑉
∑

𝛽𝑣 = 1, 𝛽𝑣 ≥ 0, 𝑖 = 1,… , 𝑛1.
(5)
4

𝑣=1
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The corresponding solutions of 𝜶 and 𝜷 are

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼𝑣 =
∑𝑛

𝑖=1(𝐱
(𝑣)𝑇
𝑖,⋅ 𝐰(𝑣)+𝑏𝑤)

∑𝑉
𝑣=1

∑𝑛
𝑖=1(𝐱

(𝑣)𝑇
𝑖,⋅ 𝐰(𝑣)+𝑏𝑤)

, (a)

𝛽𝑣 =
∑𝑛1

𝑗=1(𝐱̃
(𝑣)𝑇
𝑗,⋅ 𝐮(𝑣)+𝑏𝑢)

∑𝑉
𝑣=1

∑𝑛
𝑗=1(𝐱̃

(𝑣)𝑇
𝑗,⋅ 𝐮(𝑣)+𝑏𝑢)

, (b)
(6)

Obviously, we see that 𝛼𝑣 and 𝛽𝑣 is dependent on the target variables 𝐰(𝑣), 𝑏𝑤, and 𝐮(𝑣), 𝑏𝑢, respectively.
The matrix [𝐰(1),… ,𝐰(𝑉 ),𝐮(1),… ,𝐮(𝑉 )] ∈ R𝑑×2𝑉 (where 𝑑(1) = ⋯ = 𝑑(𝑉 ) = 𝑑 in the multi-modality learning in this work) conducts

eature selection across all tasks as well as across all modalities. This is our first strategy to deal with the apparent difference
etween mild cases and severe cases. The motivation is that (1) the features are selected by the common information across all
odalities (types of features) and all tasks for detecting slight difference and (2) the features selected across modalities and tasks

an detect appearance difference more easily than the features selected from single modality or a single task. Moreover, feature
election can remove the redundant features to solve the issue of the HDLSS data and select important features (i.e., the ROIs) to
ave interpretability.

By observing that (1) each task (i.e., the classification task and the prediction/regression task) focuses on the same subject and (2)
very modality is used to explain the same subject, the consistency across all tasks as well as the consistency across all modalities
re our second strategy for identifying the slight appearance between two kinds of COVID-19 cases. To this end, we design the
egularization terms as follows:

𝑉
∑

𝑝,𝑞=1
(‖𝐗̃(𝑝)𝑇 [𝐰(𝑝),𝐮(𝑝)] − 𝐗̃(𝑞)𝑇 [𝐰(𝑞),𝐮(𝑞)]‖2𝐹

+ ‖𝐗̂(𝑝)𝑇 𝐰(𝑝) − 𝐗̂(𝑞)𝑇 𝐰(𝑞)
‖

2
𝐹 ).

(7)

In Eq. (7), the first term indicates the consistency across all modalities and all tasks for the original data set involving both the
lassification task and the regression task, while the second term represents the consistency across the modalities for the augmented
ata set involving the classification task only.

Finally, the objective function of our proposed MM-SVM method can be formulated as follows:

min
𝐰(𝑣) ,𝐮(𝑣) ,𝑏𝑤 ,𝑏𝑢

𝐶1

𝑛
∑

𝑖=1
𝜉𝑖 + 𝐶2

𝑛1
∑

𝑗=1
(𝜂𝑗 , 𝜂̂𝑗 )

+ 𝜆‖[𝐰(1),… ,𝐰(𝑉 ),𝐮(1),… ,𝐮(𝑉 )]‖2,1

+ 𝜌
𝑉
∑

𝑝,𝑞=1
(‖𝐗̃(𝑝)𝑇 [𝐰(𝑝),𝐮(𝑝)] − 𝐗̃(𝑞)𝑇 [𝐰(𝑞),𝐮(𝑞)]‖2𝐹

+ ‖𝐗̂(𝑝)𝑇 𝐰(𝑝) − 𝐗̂(𝑞)𝑇 𝐰(𝑞)
‖

2
𝐹 ),

𝑠.𝑡., 𝑦𝑖(
𝑉
∑

𝑣=1
𝛼𝑣(𝐱

(𝑣)𝑇
𝑖,⋅ 𝐰(𝑣) + 𝑏𝑤)) ≥ 1 − 𝜉𝑖,

𝑉
∑

𝑣=1
𝛽𝑣(𝐱̃

(𝑣)𝑇
𝑗,⋅ 𝐮(𝑣) + 𝑏𝑢) − 𝑧𝑗 ≤ 𝜖 + 𝜂𝑗 ,

𝑧𝑗 −
𝑉
∑

𝑣=1
𝛽𝑣(𝐱̃

(𝑣)𝑇
𝑗,⋅ 𝐮(𝑣) + 𝑏𝑢) ≤ 𝜖 + 𝜂̂𝑗 ,

𝑉
∑

𝑣=1
𝛼𝑣 = 1,

𝑉
∑

𝑣=1
𝛽𝑣 = 1, 𝛼𝑣, 𝛽𝑣 ≥ 0,

𝜉𝑖, 𝜂𝑗 , 𝜂̂𝑗 ≥ 0, 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑛1.

(8)

where 𝐶1, 𝐶2, 𝜆, and 𝜌 are the non-negative tuning parameters. The first constraint maximizes the distance of the nearest sample
points to the hyperplane and uses 𝜉𝑖 to control the proportion of partial non-support vector errors. The second and the third constraint
minimizes the distance of the furthest sample points from the hyperplane in terms of upper bound and lower bound, respectively.
The constraints in the fourth row restrict the sum of the parameters (i.e., 𝜶 and 𝜷) over different types of features to be equal to
one, and define each parameter (i.e., 𝛼𝑣 and 𝛽𝑣) to be non-negative value. The constraints in the fifth row define the non-negative
variables, including 𝜉𝑖, 𝜂𝑗 , 𝜂̂𝑗 .

1.3.3. Optimization
Eq. (8) is not convex for all variables (i.e., 𝐰(𝑣), 𝐮(𝑣), 𝑏𝑤, 𝑏𝑢), but is convex for every variable by fixing other variables. Hence,

in this work, we employ the alternating optimization strategy (Bezdek & Hathaway, 2003) to optimize the variables in Eq. (8). We
list the pseudo of the proposed optimization in Algorithm 1 and list the details as follows.

(i) Update 𝐰(𝑣), and 𝑏 , by fixing 𝐮(𝑣), and 𝑏 .
5
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t

Algorithm 1: The pseudo code for optimizing Eq. (8).

Input: 𝐗 ∈ R𝑑(𝑣)×𝑛, 𝐲 ∈ R1×𝑛, 𝐳 ∈ R1×𝑛, 𝐶1, 𝐶2, 𝜉𝑖, 𝜖, 𝜂𝑗 , 𝜂̂𝑗 , 𝜆, and 𝜌;
Output: 𝐰(𝑣) ∈ R𝑑(𝑣) , 𝐮(𝑣) ∈ R𝑑(𝑣) , 𝑏𝑤, 𝑏𝑢;
1. Randomly initialize 𝐰(𝑣), 𝐮(𝑣), 𝑏𝑤, 𝑏𝑢;
2. Calculate 𝐌, 𝛼, and 𝛽;
3. Calculate 𝐗̄(𝑣) = 𝐌− 1

2
∑𝑉

𝑞=1(𝐗̃
(𝑞) + 𝐗̂(𝑞));

4. Calculate 𝐰̄(𝑣) = 𝐌
1
2 𝐰(𝑣) and 𝐮̄(𝑣) = 𝐌

1
2 𝐮(𝑣);

5. Repeat:
5.1 Relax the input data as 𝐌− 1

2 𝐗̄;
5.2 Update 𝐰̄(𝑣) and 𝑏𝑤 via Eq. (17);
5.3 Update 𝐮̄(𝑣) and 𝑏𝑢 via Eq. (22);
5.4 Update 𝛼 and 𝛽 via ;
5.5 Update 𝐌 by 𝑚𝑖,𝑖 =

1
2||(𝐰̄(1) ,...,𝐰̄(𝑉 ) ,𝐮̄(1) ,...,𝐮̄(𝑉 ))𝑖,⋅||2

;
until converges

6. Calculate 𝐰(𝑣) = 𝐌− 1
2 𝐰̄(𝑣) and 𝐮(𝑣) = 𝐌− 1

2 𝐮̄(𝑣);

The optimization of 𝐰(𝑣) is dependent on the optimization of 𝐰(𝑣′) (𝑣 ≠ 𝑣′), so we list the optimization of 𝐰(𝑣) as follows. Given
he variables (i.e., 𝐮(𝑣), 𝑏𝑢), the objective function with respect to the variables (i.e., 𝐰(𝑣), 𝑏𝑤) becomes:

min
𝐰(𝑣) ,𝑏𝑤

𝐶1

𝑛
∑

𝑖=1
𝜉𝑖 + 𝜆‖[𝐰(1),… ,𝐰(𝑉 ),𝐮(1),… ,𝐮(𝑉 )]‖2,1

+ 𝜌
𝑉
∑

𝑣,𝑞=1
(‖𝐗̃(𝑣)𝑇 [𝐰(𝑣),𝐮(𝑣)] − 𝐗̃(𝑞)𝑇 [𝐰(𝑞),𝐮(𝑞)]‖2𝐹

+ ‖𝐗̂(𝑣)𝑇 𝐰(𝑣) − 𝐗̂(𝑞)𝑇 𝐰(𝑞)
‖

2
𝐹 )

𝑠.𝑡., 𝑦𝑖(
𝑉
∑

𝑣=1
𝛼𝑣(𝐱

(𝑣)𝑇
𝑖,⋅ 𝐰(𝑣) + 𝑏𝑤)) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0, 𝑖 = 1,… , 𝑛.

(9)

It is difficult to directly solve the primal problem in Eq. (9), so we solve its dual problem. To this end, we employ the Augmented
Lagrange Multipliers (ALM) method (Gill & Robinson, 2012) to obtain the Lagrangian function of Eq. (9) as:

min
𝐰(𝑣) ,𝑏𝑤 ,𝜉𝑖

max
𝜸,𝜹

𝐶1

𝑛
∑

𝑖=1
𝜉𝑖 −

𝑛
∑

𝑖=1
𝛿𝑖𝜉𝑖

+ 𝜆‖[𝐰(1),… ,𝐰(𝑉 ),𝐮(1),… ,𝐮(𝑉 )]‖2,1

+ 𝜌
𝑉
∑

𝑣,𝑞=1
(‖𝐗̃(𝑣)𝑇 [𝐰(𝑣),𝐮(𝑣)] − 𝐗̃(𝑞)𝑇 [𝐰(𝑞),𝐮(𝑞)]‖2𝐹

+ ‖𝐗̂(𝑣)𝑇 𝐰(𝑣) − 𝐗̂(𝑞)𝑇 𝐰(𝑞)
‖

2
𝐹 )

−
𝑛
∑

𝑖=1
𝛾𝑖[𝑦𝑖(

𝑉
∑

𝑣=1
𝛼𝑣(𝐱

(𝑣)𝑇
𝑖,⋅ 𝐰(𝑣) + 𝑏𝑤)) − 1 + 𝜉𝑖]

(10)

where 𝜹 and 𝜸 are the Lagrange multipliers.
After the mathematical computation, we obtain:

min
𝐰(𝑣) ,𝑏𝑤 ,𝜉𝑖

max
𝜸,𝜹

𝐶1

𝑛
∑

𝑖=1
𝜉𝑖 −

𝑛
∑

𝑖=1
𝛿𝑖𝜉𝑖 + 𝜆𝑡𝑟(𝐰(𝑣)𝑇 𝐌𝐰(𝑣))

+ 𝜌𝑡𝑟(𝐰(𝑣)𝑇
𝑉
∑

𝑞=1
(𝐗̃(𝑞)𝐗̃(𝑞)𝑇 + 𝐗̂(𝑞)𝐗̂(𝑞)𝑇 )𝐰(𝑣))

−
𝑛
∑

𝑖=1
𝛾𝑖[𝑦𝑖(

𝑉
∑

𝑣=1
𝛼𝑣(𝐱

(𝑣)𝑇
𝑖,⋅ 𝐰(𝑣) + 𝑏𝑤)) − 1 + 𝜉𝑖]

(11)

where the matrix 𝐌 is the diagonal matrix and each element is defined as 𝑚𝑖,𝑖 =
1

2‖(𝐰(1) ,…,𝐰(𝑉 ) ,𝐮(1) ,…,𝐮(𝑉 ))𝑖,⋅‖2
, 𝑖 = 1,… , 𝑑(𝑣). However,

the optimization of 𝐌 is dependent on the value of 𝐰(𝑣) that is unknown. Therefore, we iteratively optimize 𝐰(𝑣) and 𝐌. As a result,
denoting 𝐗̄(𝑣) = 𝐌− 1

2
∑𝑉

𝑞=1(𝐗̃
(𝑞) + 𝐗̂(𝑞)) and 𝐰̄(𝑣) = 𝐌

1
2 𝐰(𝑣), we have:

min
𝐰̄(𝑣) ,𝑏𝑤 ,𝜉𝑖

max
𝜸,𝜹

𝐶1

𝑛
∑

𝑖=1
𝜉𝑖 −

𝑛
∑

𝑖=1
𝛿𝑖𝜉𝑖

+ 𝜆𝑡𝑟(𝐰̄(𝑣)𝑇 𝐰̄(𝑣)) + 𝜌𝑡𝑟(𝐰̄(𝑣)𝑇 𝐗̄(𝑣)𝐗̄(𝑣)𝑇 𝐰̄(𝑣))

−
𝑛
∑

𝛾𝑖[𝑦𝑖(
𝑉
∑

𝛼𝑣(𝐱̄
(𝑣)𝑇
𝑖,⋅ 𝐰̄(𝑣) + 𝑏𝑤)) − 1 + 𝜉𝑖]

(12)
6
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w

c

a

Taking the derivative of Eq. (12) with respect to 𝐰̄(𝑣), 𝑏𝑤, and 𝜉𝑖, and then letting the results as zeros, we have:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐰̄(𝑣) = (𝐆(𝑣))−1(
𝑛
∑

𝑖=1
𝛾𝑖𝑦𝑖

𝑉
∑

𝑣=1
𝛼𝑣𝐱̄

(𝑣)
𝑖,⋅ ), (a)

𝑛
∑

𝑖=1
𝛾𝑖𝑦𝑖 = 0, (b)

𝐶1 = 𝛾𝑖 + 𝛿𝑖. (c)

(13)

where 𝐆(𝑣) = 𝜌𝐗̄(𝑣)𝐗̄(𝑣)𝑇 + 𝜆𝐈𝑑 and 𝐈𝑑 is an identity matrix. Combining Eq. with Eq. (12), we have,

max
𝜸

𝑛
∑

𝑖=1
𝛾𝑖 −

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝛾𝑖𝛾𝑗𝑦𝑖𝑦𝑗

𝑉
∑

𝑣=1
𝛼2𝑣 𝐱̄

(𝑣)𝑇
𝑖,⋅ 𝐎(𝑣)𝐱̄(𝑣)𝑖,⋅

𝑠.𝑡.,
𝑛
∑

𝑖=1
𝛾𝑖𝑦𝑖 = 0, 0 ≤ 𝛾𝑖 ≤ 𝐶1, 𝑖 = 1,… , 𝑛.

(14)

here 𝐎(𝑣) = 𝐆(𝑣)−1 − 𝜆𝑣
2 (𝐆(𝑣)−1 )𝑇 𝐗̄(𝑣)𝐗̄(𝑣)𝑇 𝐆(𝑣)−1 − 1

2 (𝐆
(𝑣)−1 )𝑇𝐆(𝑣)−1 .

We convert Eq. (14) to its minimal optimization problem as:

min
𝜸

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝛾𝑖𝛾𝑗𝑦𝑖𝑦𝑗

𝑉
∑

𝑣=1
𝛼2𝑣 𝐱̄

(𝑣)𝑇
𝑖,⋅ 𝐎(𝑣)𝐱̄(𝑣)𝑖,⋅ −

𝑛
∑

𝑖=1
𝛾𝑖

𝑠.𝑡.,
𝑛
∑

𝑖=1
𝛾𝑖𝑦𝑖 = 0, 0 ≤ 𝛾𝑖 ≤ 𝐶1, 𝑖 = 1,… , 𝑛.

(15)

We first decompose the symmetric positive semi-definite (PSD) matrix 𝐎(𝑣) to obtain the equation, i.e., 𝐎(𝑣) = 𝐨(𝑣)𝑇 𝐨(𝑣), and then
onvert the Eq. (15) to

min
𝜸

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝛾𝑖𝛾𝑗𝑦𝑖𝑦𝑗𝐱𝑇𝑖,⋅𝐱𝑖,⋅ −

𝑛
∑

𝑖=1
𝛾𝑖

𝑠.𝑡.,
𝑛
∑

𝑖=1
𝛾𝑖𝑦𝑖 = 0, 0 ≤ 𝛾𝑖 ≤ 𝐶1, 𝑖 = 1,… , 𝑛.

(16)

where 𝐱𝑖,⋅ =
∑𝑉

𝑣=1 𝛼𝑣𝐨
(𝑣)𝐱̄(𝑣)𝑖,⋅ . Finally, we employ the SVM solvers (Bottou & Lin, 2007) to obtain the optimal solutions of 𝐰̄(𝑣) and 𝑏𝑤

s:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐰̄(𝑣) = 𝐆(𝑣)−1
𝑛
∑

𝑖∈𝑆𝑉
𝛾𝑖𝑦𝑖

𝑉
∑

𝑣=1
𝛼𝑣𝐨(𝑣)𝐱̄

(𝑣)
𝑖,⋅ , (a)

𝑏𝑤 = 1
|𝑆𝑉 |

𝑛
∑

𝑖∈𝑆𝑉
(𝑦𝑖 −

𝑉
∑

𝑣=1
𝛼𝑣𝐱̄

(𝑣)𝑇
𝑖,⋅ 𝐰̄(𝑣)). (b)

(17)

where |𝑆𝑉 | denotes the cardinality of the support vector set.
(ii) Update 𝐮(𝑣), and 𝑏𝑢, by fixing 𝐰(𝑣), and 𝑏𝑤.
The optimization of 𝐮(𝑣) is dependent on the optimization of 𝐮(𝑣′) (𝑣 ≠ 𝑣′), so we list the details of the optimization of 𝐮(𝑣) as

follows.
After fixing 𝐰(𝑣), 𝑏𝑤, the objective function with respect to the variables (i.e., 𝐮(𝑣), 𝑏𝑢) is:

min
𝐮(𝑣) ,𝑏𝑢

𝐶2

𝑛1
∑

𝑖=1
(𝜂𝑖, 𝜂̂𝑖) + 𝜆‖[𝐰(1),… ,𝐰(𝑉 ),𝐮(1),… ,𝐮(𝑉 )]‖2,1

+ 𝜌
𝑉
∑

𝑞=1
‖𝐗̃(𝑣)𝑇 [𝐰(𝑣),𝐮(𝑣)] − 𝐗̃(𝑞)𝑇 [𝐰(𝑞),𝐮(𝑞)]‖2𝐹

𝑠.𝑡.,
𝑉
∑

𝑣=1
𝛽𝑣(𝐱̃

(𝑣)𝑇
𝑖,⋅ 𝐮(𝑣) + 𝑏𝑢) − 𝑧𝑖 ≤ 𝜖 + 𝜂𝑖,

𝑧𝑖 −
𝑉
∑

𝑣=1
𝛽𝑣(𝐱̃

(𝑣)𝑇
𝑖,⋅ 𝐮(𝑣) + 𝑏𝑢) ≤ 𝜖 + 𝜂̂𝑖, 𝜂𝑖, 𝜂̂𝑖 ≥ 0, 𝑖 = 1,… , 𝑛1.

(18)

To solve the dual problem of Eq. (18), we first obtain the corresponding Lagrangian function as:

min
𝐮(𝑣) ,𝑏𝑢 ,𝜂𝑗 ,𝜂̂𝑗

max
𝝁,𝝁̂,𝝓,𝝓̂

𝐶2

𝑛1
∑

𝑖=1
(𝜂𝑖, 𝜂̂𝑖) + 𝜆𝑡𝑟(𝐮̄(𝑣)𝑇 𝐮̄(𝑣))

+ 𝜌𝑡𝑟(𝐮̄(𝑣)𝑇 𝐅(𝑣)𝐅(𝑣)𝑇 𝐮̄(𝑣)) −
𝑛1
∑

𝑖=1
𝜙𝑖𝜂𝑖 −

𝑛1
∑

𝑖=1
𝜙̂𝑖𝜂̂𝑖

−
𝑛1
∑

𝑖=1
𝜇𝑖[𝜖 + 𝜂𝑖 −

𝑉
∑

𝑣=1
𝛽𝑣(𝐱̄

(𝑣)𝑇
𝑖,⋅ 𝐮(𝑣) + 𝑏𝑢) + 𝑧𝑖]

−
𝑛1
∑

𝜇̂𝑖[𝜖 + 𝜂̂𝑖 − 𝑧𝑖 +
𝑉
∑

𝛽𝑣(𝐱̄
(𝑣)𝑇
𝑖,⋅ 𝐮(𝑣) + 𝑏𝑢)]

(19)
7
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𝐨

1

T

P
𝑏

t
K
s

t

where 𝐅(𝑣) = 𝐌− 1
2
∑𝑉

𝑞=1 𝐗̃
(𝑞) and 𝐮̄(𝑣) = 𝐌

1
2 𝐮(𝑣). We then calculate the derivative of the Eq. (19) with respect to the variables 𝐮̄(𝑣),

𝑏𝑢, 𝜂𝑗 , and 𝜂̂𝑗 , and then set their results to zeros to have:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐮̄(𝑣) = 𝐆̄(𝑣)−1
𝑛1
∑

𝑖=1
(𝜇𝑖 − 𝜇̂𝑖)

𝑉
∑

𝑣=1
𝛽𝑣𝐟

(𝑣)
𝑖,⋅ , (a)

𝑛1
∑

𝑖=1
(𝜇𝑖 − 𝜇̂𝑖) = 0, (b)

𝐶2 = 𝜇𝑖 + 𝜙𝑖, (c)
𝐶2 = 𝜇̂𝑖 + 𝜙̂𝑖. (d)

(20)

By combining Eq. (20) with Eq. (19), we have

max
𝝁,𝝁̂

𝑛1
∑

𝑖=1
(𝜇𝑖 − 𝜇̂𝑖)𝑧𝑖 −

𝑛1
∑

𝑖=1
(𝜇𝑖 + 𝜇̂𝑖)𝜖 −

𝑛1
∑

𝑖,𝑗=1
(𝜇𝑖 − 𝜇̂𝑖)(𝜇𝑗 − 𝜇̂𝑗 )𝐟𝑇𝑖,⋅𝐟𝑖,⋅

𝑠.𝑡.,
𝑛1
∑

𝑖=1
(𝜇𝑖 − 𝜇̂𝑖) = 0, 0 ≤ 𝜇𝑖, 𝜇̂𝑖 ≤ 𝐶2, 𝑖 = 1,… , 𝑛1.

(21)

where 𝐟𝑖,⋅ =
∑𝑉

𝑣=1 𝛽𝑣𝐨̄
(𝑣)𝐟 (𝑣)𝑖,⋅ . We decompose the symmetric positive semi-definite (PSD) matrix 𝐎̄(𝑣) to obtain the equation, i.e., 𝐎̄(𝑣) =

̄ (𝑣)𝑇 𝐨̄(𝑣), where 𝐎̄(𝑣) = 𝐆̄(𝑣)−1 − 𝜆𝑣
2 (𝐆̄(𝑣)−1 )𝑇𝐅(𝑣)𝐅(𝑣)𝑇 𝐆̄(𝑣)−1 − 1

2 (𝐆̄
(𝑣)−1 )𝑇 𝐆̄(𝑣)−1 and 𝐆̄(𝑣) = 𝜌𝐅(𝑣)𝐅(𝑣)𝑇 + 𝜆𝐈𝑑 .

Finally, we employ traditional SVM solvers (Bottou & Lin, 2007) to obtain the optimal solutions of 𝐮̄(𝑣) and 𝑏𝑢 as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐮̄(𝑣) = 𝐆̄(𝑣)−1
𝑛1
∑

𝑖∈𝑆𝑉
(𝜇𝑖 − 𝜇̂𝑖)

𝑉
∑

𝑣=1
𝛽𝑣𝐨(𝑣)𝐟

(𝑣)
𝑖,⋅ , (a)

𝑏𝑢 =
1

|𝑆𝑉 |

𝑛1
∑

𝑖∈𝑆𝑉
(𝑧𝑖 + 𝜖 −

𝑉
∑

𝑣=1
𝛽𝑣𝐟

(𝑣)𝑇
𝑖,⋅ 𝐮̄(𝑣)). (b)

(22)

Based on Eqs. (17) and (22), we use the following equations to predict the new test sample 𝐱𝑡𝑒 = {𝐱(1)𝑡𝑒 ,… , 𝐱(𝑉 )
𝑡𝑒 }:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑦𝑡𝑒 = 𝑚𝑎𝑥{
𝑉
∑

𝑣
𝛼𝑣𝐱

(𝑣)𝑇
𝑡𝑒 𝐰(𝑣) + 𝑏𝑤, 0}, (a)

𝑧𝑡𝑒 =
𝑉
∑

𝑣
𝛽𝑣𝐱

(𝑣)𝑇
𝑡𝑒 𝐮(𝑣) + 𝑏𝑢. (b)

(23)

.3.4. Convergence analysis
We prove the convergence of Algorithm 1 to optimize our proposed objective function in Eq. (8) by the following Theorem 1.

heorem 1. The objective function value of Eq. (8) monotonically decreases until Algorithm 1 converges.

roof. We first denote 𝐽 (𝐰(𝑣),𝐮(𝑣), 𝑏𝑤, 𝑏𝑢) as the objective function value of Eq. (8), and also denote 𝐰(𝑣)(𝑡+1), 𝐮(𝑣)(𝑡+1), 𝑏(𝑡+1)𝑤 , and
(𝑡+1)
𝑢 , as the updated values of 𝐰(𝑣)(𝑡), 𝐮(𝑣)(𝑡), 𝑏(𝑡)𝑤 , and 𝑏(𝑡)𝑢 , respectively, where 𝑡 indicates the 𝑡th iteration.

According to dual coordinate descent method in the literature (Hsieh, Chang, Lin, Keerthi, & Sundararajan, 2008), we find
hat 𝜸 in Eq. (16) obtains a global optimal solution. Therefore, we employ the SVM solvers (Bottou & Lin, 2007) which consider
arush–Kuhn–Tucker (KKT) conditions (Boyd, Vandenberghe, & Faybusovich, 2006) to optimize 𝐰(𝑣) and 𝑏𝑤 and obtain the optimal
olutions.

Based on Eq. , the variable 𝑏𝑤 has a closed-form solution, so we have:

𝐽 (𝐰(𝑣)(𝑡+1),𝐮(𝑣)(𝑡+1), 𝑏(𝑡+1)𝑤 , 𝑏(𝑡+1)𝑢 )
≤ 𝐽 (𝐰(𝑣)(𝑡+1),𝐮(𝑣)(𝑡+1), 𝑏(𝑡)𝑤 , 𝑏(𝑡+1)𝑢 )

(24)

Since the optimization of 𝐰(𝑣) is independent on the optimization of 𝐰(𝑣′) (𝑣 ≠ 𝑣′), we first focus on the convergence analysis for
he individual modality. Considering that the optimization of 𝐰(𝑣) is in dependent on the optimization 𝐌, we obtain:

𝐽 (𝐰(𝑣),𝐮(𝑣), 𝑏𝑤, 𝑏𝑢)
= 𝐽 (𝐰(𝑣)) + 𝜆𝑡𝑟(𝐰(𝑣)𝑇 𝐌𝐰(𝑣))

(25)

Based on , we have:

𝐽 (𝐰(𝑣)(𝑡+1) ) + 𝜆
𝑑(𝑣)
∑

𝑖

‖(𝐰(𝑣)(𝑡+1) )𝑖,⋅‖22
2‖(𝐰(𝑣)(𝑡) )𝑖,⋅‖2

≤ 𝐽 (𝐰(𝑣)(𝑡) ) + 𝜆
𝑑(𝑣)
∑ ‖(𝐰(𝑣)(𝑡) )𝑖,⋅‖22

(𝑡)

(26)
8

𝑖 2‖(𝐰(𝑣) )𝑖,⋅‖2



Information Processing and Management 59 (2022) 102782R. Hu et al.
Since (‖(𝐰(𝑣)(𝑡+1) )𝑖,⋅‖2 − ‖(𝐰(𝑣)(𝑡) )𝑖,⋅‖2)2 ≥ 0, we obtain:

‖(𝐰(𝑣)(𝑡+1) )𝑖,⋅‖2 −
‖(𝐰(𝑣)(𝑡+1) )𝑖,⋅‖22
2‖(𝐰(𝑣)(𝑡) )𝑖,⋅‖2

≤ ‖(𝐰(𝑣)(𝑡) )𝑖,⋅‖2 −
‖(𝐰(𝑣)(𝑡) )𝑖,⋅‖22
2‖(𝐰(𝑣)(𝑡) )𝑖,⋅‖2

(27)

By embedding Eq. (27) into Eq. (26), we get:

𝐽 (𝐰(𝑣)(𝑡+1) ) + 𝜆
𝑑(𝑣)
∑

𝑖
‖(𝐰(𝑣)(𝑡+1) )𝑖,⋅‖2

≤ 𝐽 (𝐰(𝑣)(𝑡+1) ) + 𝜆
𝑑(𝑣)
∑

𝑖
‖(𝐰(𝑣)(𝑡) )𝑖,⋅‖2

(28)

After combining with all 𝐰(𝑣)s from all modalities, we have:

𝐽 (𝐰(𝑣)(𝑡+1),𝐮(𝑣)(𝑡+1), 𝑏(𝑡)𝑤 , 𝑏(𝑡+1)𝑢 )
≤ 𝐽 (𝐰(𝑣)(𝑡),𝐮(𝑣)(𝑡+1), 𝑏(𝑡)𝑤 , 𝑏(𝑡+1)𝑢 )

(29)

Similarly, after 𝝁 and 𝝁̂ obtain the global optimal solution, we employ the SVM solvers (Bottou & Lin, 2007) to achieve the
optimal solution of 𝐮(𝑣) and 𝑏𝑢. Specifically, the variable 𝑏𝑢 has a closed-form solution in Eq. (22)(b), so we have:

𝐽 (𝐰(𝑣)(𝑡),𝐮(𝑣)(𝑡+1), 𝑏(𝑡)𝑤 , 𝑏(𝑡+1)𝑢 )
≤ 𝐽 (𝐰(𝑣)(𝑡),𝐮(𝑣)(𝑡+1), 𝑏(𝑡)𝑤 , 𝑏(𝑡)𝑢 )

(30)

By following the same process from Eq. (25) to Eq. (29), we have:

𝐽 (𝐰(𝑣)(𝑡),𝐮(𝑣)(𝑡+1), 𝑏(𝑡)𝑤 , 𝑏(𝑡)𝑢 )
≤ 𝐽 (𝐰(𝑣)(𝑡),𝐮(𝑣)(𝑡), 𝑏(𝑡)𝑤 , 𝑏(𝑡)𝑢 )

(31)

By integrating Eq. (24) with Eqs. (29)–(31), we have:

𝐽 (𝐰(𝑣)(𝑡+1),𝐮(𝑣)(𝑡+1), 𝑏(𝑡+1)𝑤 , 𝑏(𝑡+1)𝑢 )
≤ 𝐽 (𝐰(𝑣)(𝑡),𝐮(𝑣)(𝑡), 𝑏(𝑡)𝑤 , 𝑏(𝑡)𝑢 )

(32)

Based on Eq. (32), the objective function values in Eq. (8) gradually decrease with the increase of the iterations until Algorithm
1 converges. Therefore, The proof of Theorem 1 has been completed. □

1.3.5. Complexity analysis
The computational complexity of Algorithm 1 is 𝑂(𝑡(𝑛𝑁2

𝑆𝑉 𝐷 + 𝑁𝑆𝑉 𝐷)) (Bottou & Lin, 2007), where 𝑛 is the number of the
samples, 𝐷 =

∑𝑉
𝑣 𝑑(𝑣) is the feature number, 𝑁𝑆𝑉 is the number of support vectors, and 𝑡 is the maximal iteration number.

2. Experiments

We experimentally evaluated our proposed method, compared to six comparison methods, on two synthetic multi-modality data
sets and a COVID-19 data set, in terms of the binary classification and regression performance.

2.1. Data sets

Two synthetic multi-modality data sets (i.e., Data 1 and Data 2) were generated by the scikit-learn toolbox (Pedregosa, et al.,
2011) to conduct joint classification and regression. Specifically, Data 1 had 4000 samples and each class had 2000 samples. Each
sample had 500 features for each modality and the first modality had 10% redundant features and the second modality had 30%
redundant features. Data 2 consisted of 5000 samples where the first class had 2000 samples and the second class had 3000 samples.
Each sample had 1000 features for each modality and the percentages of the redundant features in three views were 20%, 40%,
and 60%.

The real COVID-19 data set has 422 confirmed COVID-19 patients which are composed of 322 mild cases and 100 severe cases,
and then, each case is consisted of 130 features based on semantic regions of interest (ROIs) and the Hounsfield Units (HU) ranges
segmentation.

2.2. Comparison methods

The comparison methods included one Baseline method, five state-of-the-art methods, such as Log-Least (Zhu, et al., 2021),
Multi-Modal Multi-Task (M3T) (Zhang et al., 2012), Multi-view Common Component Discriminant Analysis (MvCCDA) (You, et al.,
9

2019), Cross Partial Multi-View Networks (CPM-Nets) (Kang, et al., 2020), and Multi-View Fusion (MVF) (Wu, et al., 2020).
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Fig. 2. The ROC curves of all methods on the COVID-19 data set.

• Baseline concatenates the features across all modalities to conduct joint classification and regression on single modality data by
embedding the SVC and the SVR in the same framework. The Baseline does not touch any issues such as the slight appearance
difference, the HDLSS data issue, the interpretability, and the class imbalance problem.

• Log-Least embeds the logistic regression and the least square regression in the same framework to conduct joint classification
and regression on single modality data by exploring the HDLSS data issue, the interpretability, and the class imbalance problem.

• M3T first conducts multi-modality feature selection to output the reduced data, which are then separately fed into the kernel
functions to obtain the kernel matrices which are separately conducted the multi-view SVC and multi-view SVR. M3T considers
the HDLSS data issue and the interpretability.

• MvCCDA first conducts multi-view subspace learning to deal with the issues, such as the view discrepancy, the discriminative
ability, and the nonlinearity in a joint manner, and then jointly conducts the classification task and the regression task by the
Baseline. MvCCDA explores the HDLSS data issue.

• CPM-Nets learns the completeness among multi-view CT images by a group of backward neural networks (i.e., each for one
type of features) to conduct joint classification and regression. CPM-Nets investigates the issue such as the HDLSS data issue.

• MVF first extracts multiple features from the CT images of the COVID-19 and then employs the ResNet-50 to output the
representation for each view, followed by fusing three kinds of representations to conduct joint classification and regression.
MVF investigates the issue such as the HDLSS data issue.

All methods conduct joint classification and regression, but the methods (e.g., M3T and MvCCDA) separately deal with the HDLSS
data issue and the multi-task learning. The methods (e.g., Log-Least, M3T, and our proposed method) conduct feature selection to
have interpretability. Baseline and Log-Least jointly conduct classification and regression on single-modality data. The methods
(e.g., Log-Least, CPM-Nets and MVF) were designed to deal with the COVID-19 and the methods (e.g., CPM-Nets and MVF) are deep
learning methods.

2.3. Setting

We employed the 10-fold cross-validation scheme to conduct experiments for all methods. In particular, in each experiment, we
partitioned the whole data set into ten subsets where nine subsets were used for the training and the left one was used for the testing.
We repeated the 10-fold cross-validation scheme ten times and reported the average values as the final results. Moreover, in the
model selection, the ranges of 𝐶1 and 𝐶2 were {2−5, 2−4,… , 25} and the parameters (e.g., 𝜖, 𝝃, 𝜼, and 𝜼̂) were set the default values of
the Libsvm toolbox for all SVM methods, such as our proposed framework, Baseline, M3T, and MvCCDA. We set 𝜆, 𝜌 ∈ {10−3,… , 103}
in Eq. (8) and set the parameters based on the literature so that all methods outputted their best results.

In this work, we first compared both the classification performance and the regression performance of all methods on two
synthetic data sets and a real COVID-19 data set, and then reported the top features selected by feature selection methods. We
further conducted the experiments to investigate the effectiveness of our proposed framework in details, such as the effectiveness of
either the classification task or the regression task, the parameters’ sensitivity analysis, and the convergence analysis. We employed
the evaluation metrics to evaluate the performance of all methods, such as ACCuracy (ACC), SENsitivity (SEN), SPEcificity (SPE), and
receiver operating characteristic (ROC) curves for the classification task, and Correlation Coefficient (CC) and Root Mean Squared
Error (RMSE) for the regression task.

2.4. Experiments on two synthetic data sets

We listed the classification and regression results of all methods in Tables 1–2, where our framework achieved the best
performance on two synthetic data sets, followed by MVF, CPM-Nets, Log-Least, M3T, MvCCDA, and Baseline. For example, our
method improved by 11.93%, 10.94%, 9.36%, 4.72%, 3.97%, and 1.77% on average, respectively, compared to Baseline, MvCCDA,
M3T, Log-Least, CPM-Nets, and MVF, in terms of the classification accuracy on Data 1. Moreover, our proposed framework improved
by 2.40%, 3.25%, 4.85%, 6.60%, 8.65%, and 10.55% on average, respectively, compared to MVF, CPM-Nets, Log-Least, M3T,
MvCCDA, and Baseline, in terms of the correlation coefficient on two synthetic data sets. This indicates the benefit of our proposed
10
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Table 1
Classification results (i.e., ACC, SEN, and SPE) (%) and regression results (i.e., CC and RMSE) of all methods on Data 1.
The values in the parentheses indicate the standard deviation.
Methods ACC SEN SPE CC RMSE

Baseline 77.54(3.57) 72.06(5.50) 83.02(5.40) 0.612(0.090) 12.76(5.69)
Log-Least 84.75(2.79) 83.01(3.02) 86.49(2.58) 0.651(0.042) 8.61(5.60)
M3T 80.11(3.30) 82.47(3.23) 77.75(4.15) 0.636(0.026) 10.58(7.70)
MvCCDA 78.53(4.89) 76.01(4.53) 81.05(4.07) 0.624(0.094) 11.83(7.17)
CPM-Nets 85.50(3.21) 82.01(3.60) 88.99(2.88) 0.671(0.048) 6.90(4.45)
MVF 87.70(3.39) 88.69(2.82) 86.71(2.89) 0.683(0.059) 5.75(3.32)
Proposed 89.47(3.32) 87.50(4.14) 91.44(2.83) 0.715(0.024) 3.72(2.51)

Table 2
Classification results (i.e., ACC, SEN, and SPE) (%) and regression results (i.e., CC and RMSE) of all methods on Data 2.
The values in the parentheses indicate the standard deviation.
Methods ACC SEN SPE CC RMSE

Baseline 73.22(3.10) 69.48(4.62) 76.96(6.75) 0.568(0.025) 13.86(8.34)
Log-Least 78.40(2.63) 77.02(2.20) 79.78(1.86) 0.643(0.039) 9.11(5.14)
M3T 77.51(5.72) 74.44(5.55) 80.58(4.66) 0.623(0.054) 12.05(7.49)
MvCCDA 76.80(8.30) 69.20(7.75) 84.40(6.92) 0.594(0.076) 13.22(8.22)
CPM-Nets 78.30(4.48) 80.42(4.12) 76.18(3.89) 0.655(0.025) 8.32(7.87)
MVF 81.35(4.62) 83.80(4.55) 78.90(4.96) 0.660(0.033) 7.94(2.08)
Proposed 83.20(3.47) 81.80(3.35) 84.60(3.84) 0.676(0.028) 6.64(3.10)

Fig. 3. Classification accuracy of all comparison methods with the data augmentation step on the COVID-19 data set. It is noteworthy that the results of Proposed
is exactly same as the results of Proposed in Table 3.

framework in terms of solving the issues such as the HDLSS data and the joint classification and regression. It is noteworthy that
the experiments on two synthetic data sets did not touch the class imbalance problem.

In addition, Baseline achieved the worst performance for both the classification task and the regression task, compared to all
ethods. For example, the worst dimensionality reduction method (e.g., MvCCDA) improved by 4.38% on average, compared to

Baseline, in terms of all evaluation metrics (excluding RMSE) on two synthetic data sets. The main reason is that the synthetic data
sets contain redundant features. However, Baseline conducts multi-task learning with all original features, whereas other methods
conduct dimensionality reduction before classification and regression, e.g., feature selection for the methods (i.e., Log-Least, M3T, and
our proposed framework) and subspace learning for MvCCDA, CPM-Nets, and MVF. This implies the importance of dimensionality
reduction on the high-dimensional data.

2.5. Experiments on the real COVID-19 data set

We reported the classification results and the regression results of all methods on the COVID-19 data set in Table 3 and the ROC
results of all methods in Fig. 2. We then listed our observations as follows.

First, the proposed framework obtained the best classification and regression performance on the COVID-19 data set, followed by
Log-Least, MVF, M3T, CPM-Nets, MvCCDA, and Baseline. For example, our framework improved by 9.35% and 17.33% on average,
respectively, compared to the best comparison method (i.e., Log-Least) and the worse comparison method (i.e., Baseline), in terms
of all classification evaluation metrics. Moreover, the proposed framework obtained the best correlation coefficient, i.e., with the
improvement of 3.30%, 6.20%, 7.90%, 8.80%, 15.70%, and 16.70%, respectively, compared to MVF, CPM-Nets, Log-Least, M3T,
MvCCDA, and Baseline. Furthermore, the proposed framework achieved the lowest RMSE (e.g., 3.56). The reason is that our proposed
framework solved the issues, such as the class imbalance, the HDLSS data, and the slight difference between mild cases and severe
cases on the chest CT images. On the contrary, the comparison methods only explored a part of the aforementioned issues.

Second, the dimensionality reduction methods (such as M3T, MvCCDA, Log-Least, CPM-Nets, and MVF) outperformed Baseline,
which conducts joint classification and regression on the original data. For example, Log-Least improved by 7.98% on average,
11
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Fig. 4. Classification accuracy of the proposed framework and the proposed framework without the data augmentation step (i.e., Proposed-w/o) on the COVID-19
ata set.

Fig. 5. The variations of the classification accuracy (left) and the correlation coefficient (middle) of the proposed framework with different parameters’ setting,
nd the variations of the objective function values (right) of the proposed framework at different iteration times, on the COVID-19 data set.

Table 3
Comparison of classification results (ACC, SEN, and SPE) (%) and regression results (CC and RMSE) of all methods on
the COVID-19 data set. The values in the parentheses indicate the standard deviation.
Methods ACC SEN SPE CC RMSE

Baseline 77.51(3.56) 69.63(4.73) 79.61(4.38) 0.374(0.042) 12.63(5.25)
Log-Least 85.69(2.19) 76.97(3.34) 88.02(1.43) 0.462(0.056) 7.35(1.09)
M3T 83.48(4.11) 76.53(3.56) 85.34(4.88) 0.453(0.017) 8.69(3.61)
MvCCDA 82.38(4.92) 74.75(3.43) 84.42(4.76) 0.384(0.038) 11.52(4.54)
CPM-Nets 82.71(3.65) 78.44(3.06) 83.85(2.85) 0.479(0.033) 6.58(8.52)
MVF 84.13(2.74) 80.71(2.50) 85.04(2.80) 0.508(0.020) 4.79(2.64)
Proposed 92.57(3.55) 91.44(3.33) 94.72(3.62) 0.541(0.033) 3.56(2.59)

Table 4
The distribution of top ROIs selected by the proposed framework.
Hu ranges Left lung (6) Right lung (9)

[-∞,-700] 1 1
[-700,-500] 2 2
[-500,-200] 2 4
[-200,50] 0 2
[50, ∞] 1 0

compared to Baseline, in terms of all three classification metrics. Hence, in the imbalanced data set, feature selection is still important
for dealing with high-dimensional data.

2.6. Discussion

In the section, we evaluated the effectiveness of our proposed framework, i.e., the effectiveness of the data augmentation in
Figs. 3 and 4, the interpretability of the selected feature by our framework in Table 4, and the parameters’ sensitivity and the
convergence analysis of our proposed framework in Fig. 5.

2.6.1. Class imbalance effectiveness
First, among all methods, the proposed framework and Log-Least take into account the class imbalance problem. Based on

Tables 1–3 where two synthetic data sets are balanced data sets and the COVID-19 data set has the class imbalance problem.
As a result, our proposed framework achieved the best performance, while Log-Least achieved the second-best on the COVID-19
data set, but ranked top 4 on two synthetic data sets. For example, Log-Least decreased by 8.85% on average on two synthetic data
12
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sets, but increased by around 0.27% on the COVID-19 data set, compared to MVF, in terms of all classification evaluation metrics.
This shows the importance of the data augmentation technique for imbalanced data sets.

Second, we employed the SMOTE technique in our framework to all comparison methods, and then listed the classification
erformance in Fig. 3. As a consequence, all comparison methods improved the classification performance, compared to their
lassification performance reported in Table 3. For example, MVF achieved the maximal improvement, i.e., 7.15% and Log-Least

obtained the minimal improvement, i.e., 2.57%. However, their classification performance is still worse than the performance of
our proposed framework. In particular, although Log-Least used a sparse method to deal with the class imbalance problem and has
been found to outperform other comparison methods on the imbalanced data set (i.e., the COVID-19 data set), it still improved the
classification accuracy by 0.44% with the augmented minority samples. The possible reason is that Log-Least uses the sparse method
to reduce the number of majority samples, thus it is difficult to construct effective classification models with limited samples. On
the contrary, the SMOTE used in our framework augments the minority samples to have enough training samples which guarantee
to produce effective classification models.

Third, we conducted the classification task with our proposed framework without the data augmentation step (i.e., Proposed-w/o)
to evaluate the effectiveness of our proposed MM-SVM method in Fig. 4. Based on the results, the classification accuracy Proposed-
w/o outperformed the performance of all comparison methods in Table 3, where all comparison methods did not take into account
the class imbalance problem. For example, the proposed framework improved by around 6.29%, compared to Proposed-w/o, in terms
of three classification evaluation metrics. Proposed-w/o improved by 3.33% on average, compared to the best comparison methods
in Table 3, in terms of three classification evaluation metrics. This implied that (1) the data augmentation is necessary for dealing
with the imbalanced data set and (2) the proposed framework is better than all comparison methods even though only considering
the issues such as the slight appearance difference between mild cases and severe cases, the HDLSS data, and the interpretability.

2.6.2. Interpretability of top selected regions
We listed the top selected features (i.e., the chest ROIs) by our proposed framework in Table 4, which could benefit the clinicians

for the practical applications, e.g., improving the efficiency and the effectiveness of the disease diagnosis and reducing the clinicians’
workloads. To this end, we first calculated the times of each feature selected by our proposed framework in all 100 experiments,
i.e., repeating the 10-fold cross-validation scheme 10 times, and then selected 15 features (i.e., chest ROIs) whose frequency was
larger than 95 out of 100.

Most of the top features (i.e., 9 of 15) were in the right lung and 10 of 15 top ROIs were in the HU range of [−700,−200]. This
shows that (1) the COVID-19 has more influence in the right lung than the influence in the left lung and (2) the severity of the
COVID-19 may be related to the regions of the ground glass opacity whose HU ranges are between −700 and -200, as shown in
previous literature (Tang, et al., 2020; Zhu, et al., 2021).

2.6.3. Sensitivity of parameters
The previous study has demonstrated that the SVM framework is very sensitive to the selection of the parameters 𝐶1 and

𝐶2 (Cortes & Vapnik, 1995), so do they in this work. We did not report such results because it is not the main contribution of
this work.

Based on the results in Fig. 5, the proposed framework is sensitive to the selection of the parameters (i.e., 𝜆 and 𝜌). However, it
is easy for our framework to obtain good performance. For example, the proposed framework obtained good performance in terms
of classification accuracy and correlation coefficient, on the COVID-19 data set with (𝜆 = 1, 𝜌 = 2) and (𝜆 = 3, 𝜌 = 2), respectively.

.6.4. Convergence analysis
In Section 1.3.4, we theoretically proved the convergence of our proposed Algorithm 1 to optimize the objective function in

q. (8). In this section, we investigated the variations of the objective function values of Eq. (8) with different iteration times. To
his end, we set the stop criteria of our proposed Algorithm 1 as |𝑜𝑏𝑗(𝑡+1)−𝑜𝑏𝑗(𝑡)|

𝑜𝑏𝑗(𝑡) ≤ 10−4, where 𝑜𝑏𝑗(𝑡) denotes the objection function
alue in the 𝑡th iteration.

As a result, our proposed Algorithm 1 ran a few iteration times to reach the convergence. That is, our proposed optimization
ethod can efficiently achieve convergence.

. Conclusion

In this study, we proposed a novel framework to conduct joint disease diagnosis and conversion time prediction. To this end,
e conducted hierarchical segmentation on the chest CT scans as well as used the common information across tasks and modalities

o detect the slight appearance difference between mild cases and severe cases, employed the oversampling method to augment the
inority samples for solving the class imbalance problem, and designed a novel multi-task multi-modality SVM method to deal with

he issue of the HDLSS data and achieve the interpretability at the same time. Experimental results on both synthetic data sets and
he real COVID-19 data set verified the effectiveness of the proposed framework, compared to the state-of-the-art methods.

In this study, we only focused on binary classification, i.e., severe cases vs. mild cases. In our future work, we plan to conduct
multi-class classification of the COVID-19 disease. Moreover, we also plan to design new registration techniques to align the
13

ongitudinal images of the same patients, and thus providing accurate measurement of the local infection changes.
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