35,895 research outputs found
Data Unfolding with Wiener-SVD Method
Data unfolding is a common analysis technique used in HEP data analysis.
Inspired by the deconvolution technique in the digital signal processing, a new
unfolding technique based on the SVD technique and the well-known Wiener filter
is introduced. The Wiener-SVD unfolding approach achieves the unfolding by
maximizing the signal to noise ratios in the effective frequency domain given
expectations of signal and noise and is free from regularization parameter.
Through a couple examples, the pros and cons of the Wiener-SVD approach as well
as the nature of the unfolded results are discussed.Comment: 26 pages, 12 figures, match the accepted version by JINS
An optimized analytical method for the simultaneous detection of iodoform, iodoacetic acid, and other trihalomethanes and haloacetic acids in drinking water
An optimized method is presented using liquid-liquid extraction and derivatization for the extraction of iodoacetic acid (IAA) and other haloacetic acids (HAA9) and direct extraction of iodoform (IF) and other trihalomethanes (THM4) from drinking water, followed by detection by gas chromatography with electron capture detection (GC-ECD). A Doehlert experimental design was performed to determine the optimum conditions for the five most significant factors in the derivatization step: namely, the volume and concentration of acidic methanol (optimized values  = 15%, 1 mL), the volume and concentration of Na2SO4 solution (129 g/L, 8.5 mL), and the volume of saturated NaHCO3 solution (1 mL). Also, derivatization time and temperature were optimized by a two-variable Doehlert design, resulting in the following optimized parameters: an extraction time of 11 minutes for IF and THM4 and 14 minutes for IAA and HAA9; mass of anhydrous Na2SO4 of 4 g for IF and THM4 and 16 g for IAA and HAA9; derivatization time of 160 min and temperature at 40°C. Under optimal conditions, the optimized procedure achieves excellent linearity (R2 ranges 0.9990–0.9998), low detection limits (0.0008–0.2 µg/L), low quantification limits (0.008–0.4 µg/L), and good recovery (86.6%–106.3%). Intra- and inter-day precision were less than 8.9% and 8.8%, respectively. The method was validated by applying it to the analysis of raw, flocculated, settled, and finished waters collected from a water treatment plant in China
Quantum state engineering with flux-biased Josephson phase qubits by Stark-chirped rapid adiabatic passages
In this paper, the scheme of quantum computing based on Stark chirped rapid
adiabatic passage (SCRAP) technique [L. F. Wei et al., Phys. Rev. Lett. 100,
113601 (2008)] is extensively applied to implement the quantum-state
manipulations in the flux-biased Josephson phase qubits. The broken-parity
symmetries of bound states in flux-biased Josephson junctions are utilized to
conveniently generate the desirable Stark-shifts. Then, assisted by various
transition pulses universal quantum logic gates as well as arbitrary
quantum-state preparations could be implemented. Compared with the usual
PI-pulses operations widely used in the experiments, the adiabatic population
passage proposed here is insensitive the details of the applied pulses and thus
the desirable population transfers could be satisfyingly implemented. The
experimental feasibility of the proposal is also discussed.Comment: 9 pages, 4 figure
Effect of carbon nanotube doping on critical current density of MgB2 superconductor
The effect of doping MgB2 with carbon nanotubes on transition temperature,
lattice parameters, critical current density and flux pinning was studied for
MgB2-xCx with x = 0, 0.05, 0.1, 0.2 and 0.3. The carbon substitution for B was
found to enhance Jc in magnetic fields but depress Tc. The depression of Tc,
which is caused by the carbon substitution for B, increases with increasing
doping level, sintering temperature and duration. By controlling the extent of
the substitution and addition of carbon nanotubes we can achieve the optimal
improvement on critical current density and flux pinning in magnetic fields
while maintaining the minimum reduction in Tc. Under these conditions, Jc was
enhanced by two orders of magnitude at 8T and 5K and 7T and 10K. Jc was more
than 10,000A/cm2 at 20K and 4T and 5K and 8.5T, respectively
The constructive approach on existence of time optimal controls of system governed by nonlinear equations on Banach spaces
In this paper, a new approach to the existence of time optimal controls of system governed by nonlinear equations on Banach spaces is provided. A sequence of Meyer problems is constructed to approach a class of time optimal control problems. A deep relationship between time optimal control problems and Meyer problems is presented. The method is much different from standard methods
Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat.
Ketamine is commonly used for anesthesia and as a recreational drug. In pregnant users, a potential neurotoxicity in offspring has been noted. Our previous work demonstrated that ketamine exposure of pregnant rats induces affective disorders and cognitive impairments in offspring. As the prefrontal cortex (PFC) is critically involved in emotional and cognitive processes, here we studied whether maternal ketamine exposure influences the development of the PFC in offspring. Pregnant rats on gestational day 14 were treated with ketamine at a sedative dose for 2 hrs, and pups were studied at postnatal day 0 (P0) or P30. We found that maternal ketamine exposure resulted in cell apoptosis and neuronal loss in fetal brain. Upon ketamine exposure in utero, PFC neurons at P30 showed more dendritic branching, while cultured neurons from P0 PFC extended shorter neurites than controls. In addition, maternal ketamine exposure postponed the switch of NR2B/2A expression, and perturbed pre- and postsynaptic protein expression in the PFC. These data suggest that prenatal ketamine exposure impairs neuronal development of the PFC, which may be associated with abnormal behavior in offsprings
Einstein Equations and MOND Theory from Debye Entropic Gravity
Verlinde's proposal on the entropic origin of gravity is based strongly on
the assumption that the equipartition law of energy holds on the holographic
screen induced by the mass distribution of the system. However, from the theory
of statistical mechanics we know that the equipartition law of energy does not
hold in the limit of very low temperature. Inspired by the Debye model for the
equipartition law of energy in statistical thermodynamics and adopting the
viewpoint that gravitational systems can be regarded as a thermodynamical
system, we modify Einstein field equations. We also perform the study for
Poisson equation and modified Newtonian dynamics (MOND). Interestingly enough,
we find that the origin of the MOND theory can be understood from Debye
entropic gravity perspective. Thus our study may fill in the gap existing in
the literature understanding the theoretical origin of MOND theory. In the
limit of high temperature our results reduce to their respective standard
gravitational equations.Comment: 8 pages, no figures. Accepted for publication in JCA
Antibunching photons in a cavity coupled to an optomechanical system
We study the photon statistics of a cavity linearly coupled to an
optomechanical system via second order correlation functions. Our calculations
show that the cavity can exhibit strong photon antibunching even when
optomechanical interaction in the optomechanical system is weak. The
cooperation between the weak optomechanical interaction and the destructive
interference between different paths for two-photon excitation leads to the
efficient antibunching effect. Compared with the standard optomechanical
system, the coupling between a cavity and an optomechanical system provides a
method to relax the constraints to obtain single photon by optomechanical
interaction.Comment: 7 papes, 5 figure
- …