81,684 research outputs found

    Thermochemical Conversion of Biomass in Smouldering Combustion across Scales: the Roles of Heterogeneous Kinetics, Oxygen and Transport Phenomena

    Get PDF
    AbstractThe thermochemical conversion of biomass in smouldering combustion is investigated here by combining experiments and modeling at two scales: matter (1mg) and bench (100g) scales. Emphasis is put on the effect of oxygen (0–33vol.%) and oxidation reactions because these are poorly studied in the literature in comparison to pyrolysis. The results are obtained for peat as a representative biomass for which there is high-quality experimental data published previously. Three kinetic schemes are explored, including various steps of drying, pyrolysis and oxidation. The kinetic parameters are found using the Kissinger–Genetic Algorithm method, and then implemented in a one-dimensional model of heat and mass transfer. The predictions are validated with thermogravimetric and bench-scale experiments and then analyzed to unravel the role of heterogeneous reaction. This is the first time that the influence of oxygen on biomass smouldering is explained in terms of both chemistry and transport phenomena across scales

    Time dependent intrinsic correlation analysis of temperature and dissolved oxygen time series using empirical mode decomposition

    Full text link
    In the marine environment, many fields have fluctuations over a large range of different spatial and temporal scales. These quantities can be nonlinear \red{and} non-stationary, and often interact with each other. A good method to study the multiple scale dynamics of such time series, and their correlations, is needed. In this paper an application of an empirical mode decomposition based time dependent intrinsic correlation, \red{of} two coastal oceanic time series, temperature and dissolved oxygen (saturation percentage) is presented. The two time series are recorded every 20 minutes \red{for} 7 years, from 2004 to 2011. The application of the Empirical Mode Decomposition on such time series is illustrated, and the power spectra of the time series are estimated using the Hilbert transform (Hilbert spectral analysis). Power-law regimes are found with slopes of 1.33 for dissolved oxygen and 1.68 for temperature at high frequencies (between 1.2 and 12 hours) \red{with} both close to 1.9 for lower frequencies (time scales from 2 to 100 days). Moreover, the time evolution and scale dependence of cross correlations between both series are considered. The trends are perfectly anti-correlated. The modes of mean year 3 and 1 year have also negative correlation, whereas higher frequency modes have a much smaller correlation. The estimation of time-dependent intrinsic correlations helps to show patterns of correlations at different scales, for different modes.Comment: 35 pages with 22 figure

    Lagrangian Cascade in Three-Dimensional Homogeneous and Isotropic Turbulence

    Full text link
    In this work, the scaling statistics of the dissipation along Lagrangian trajectories are investigated by using fluid tracer particles obtained from a high resolution direct numerical simulation with Reλ=400Re_{\lambda}=400. Both the energy dissipation rate ϵ\epsilon and the local time averaged ϵτ\epsilon_{\tau} agree rather well with the lognormal distribution hypothesis. Several statistics are then examined. It is found that the autocorrelation function ρ(τ)\rho(\tau) of ln(ϵ(t))\ln(\epsilon(t)) and variance σ2(τ)\sigma^2(\tau) of ln(ϵτ(t))\ln(\epsilon_{\tau}(t)) obey a log-law with scaling exponent β=β=0.30\beta'=\beta=0.30 compatible with the intermittency parameter μ=0.30\mu=0.30. The qqth-order moment of ϵτ\epsilon_{\tau} has a clear power-law on the inertial range 10<τ/τη<10010<\tau/\tau_{\eta}<100. The measured scaling exponent KL(q)K_L(q) agrees remarkably with qζL(2q)q-\zeta_L(2q) where ζL(2q)\zeta_L(2q) is the scaling exponent estimated using the Hilbert methodology. All these results suggest that the dissipation along Lagrangian trajectories could be modelled by a multiplicative cascade.Comment: 10 pages with 7 figures accepted for Journal of Fluid Mechanics as Rapid

    Experimental study of the formation and collapse of an overhang in the lateral spread of smouldering peat fires

    Get PDF
    Smouldering combustion is the driving phenomenon of wildfires in peatlands, and is responsible for large amounts of carbon emissions and haze episodes world wide. Compared to flaming fires, smouldering is slow, low-temperature, flameless, and most persistent, yet it is poorly understood. Peat, as a typical organic soil, is a porous and charring natural fuel, thus prone to smouldering. The spread of smouldering peat fire is a multidimensional phenomenon, including two main components: in-depth vertical and surface lateral spread. In this study, we investigate the lateral spread of peat fire under various moisture and wind conditions. Visual and infrared cameras as well as a thermocouple array are used to measure the temperature profile and the spread rate. For the first time the overhang, where smouldering spreads fastest beneath the free surface, is observed in the laboratory, which helps understand the interaction between oxygen supply and heat losses. The periodic formation and collapse of overhangs is observed. The overhang thickness is found to increase with moisture and wind speed, while the spread rate decreases with moisture and increases with wind speed. A simple theoretical analysis is proposed and shows that the formation of overhang is caused by the spread rate difference between the top and lower peat layers as well as the competition between oxygen supply and heat losses

    Large-Eddy Simulations of Flow and Heat Transfer in Complex Three-Dimensional Multilouvered Fins

    Get PDF
    The paper describes the computational procedure and results from large-eddy simulations in a complex three-dimensional louver geometry. The three-dimensionality in the louver geometry occurs along the height of the fin, where the angled louver transitions to the flat landing and joins with the tube surface. The transition region is characterized by a swept leading edge and decreasing flow area between louvers. Preliminary results show a high energy compact vortex jet forming in this region. The jet forms in the vicinity of the louver junction with the flat landing and is drawn under the louver in the transition region. Its interaction with the surface of the louver produces vorticity of the opposite sign, which aids in augmenting heat transfer on the louver surface. The top surface of the louver in the transition region experiences large velocities in the vicinity of the surface and exhibits higher heat transfer coefficients than the bottom surface.Air Conditioning and Refrigeration Project 9

    Template epitaxial growth of thermoelectric Bi/BiSb superlattice nanowires by charge-controlled pulse electrodeposition

    Get PDF
    © The Electrochemical Society, Inc. 2009. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in The Journal of The Electrochemical Society, 156(9), 2009.Bi/BiSb superlattice nanowires (SLNWs) with a controllable and very small bilayer thickness and a sharp segment interface were grown by adopting a charge-controlled pulse electrodeposition. The deposition parameters were optimized to ensure an epitaxial growth of the SLNWs with a preferential orientation. The segment length and bilayer thickness of the SLNWs can be controlled simply by changing the modulating time, and the consistency of the segment length can be well maintained by our approach. The Bravais law in the electrodeposited nanowires is verified by the SLNW structure. The current–voltage measurement shows that the SLNWs have good electrical conductance, particularly those with a smaller bilayer thickness. The Bi/BiSb SLNWs might have excellent thermoelectric performances.National Natural Science Foundation of China and the National Major Project of Fundamental Research for Nanomaterials and Nanostructures

    Superconductivity and Phase Diagram in (Li0.8_{0.8}Fe0.2_{0.2})OHFeSe1x_{1-x}Sx_x

    Full text link
    A series of (Li0.8_{0.8}Fe0.2_{0.2})OHFeSe1x_{1-x}Sx_x (0 \leq x \leq 1) samples were successfully synthesized via hydrothermal reaction method and the phase diagram is established. Magnetic susceptibility suggests that an antiferromagnetism arising from (Li0.8_{0.8}Fe0.2_{0.2})OH layers coexists with superconductivity, and the antiferromagnetic transition temperature nearly remains constant for various S doping levels. In addition, the lattice parameters of the both a and c axes decrease and the superconducting transition temperature Tc_c is gradually suppressed with the substitution of S for Se, and eventually superconductivity vanishes at xx = 0.90. The decrease of Tc_c could be attributed to the effect of chemical pressure induced by the smaller ionic size of S relative to that of Se, being consistent with the effect of hydrostatic pressure on (Li0.8_{0.8}Fe0.2_{0.2})OHFeSe. But the detailed investigation on the relationships between TcT_{\rm c} and the crystallographic facts suggests a very different dependence of TcT_{\rm c} on anion height from the Fe2 layer or ChCh-Fe2-ChCh angle from those in FeAs-based superconductors.Comment: 6 pages, 6 figure
    corecore