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LARGE-EDDY SIMULATIONS OF FLOW AND HEAT TRANSFER IN COMPLEX 
THREE-DIMENSIONAL MULTILOUVERED FINS 

D. K. Tafti, X. Zhang, W. Huang, G. Wang1 

Application Technologies Division 
National Center for Supercomputing Applications 

University of Illinois, Urbana Champaign 
Urbana, IL 61801. 

ABSTRACT 
The paper describes the computational procedure and 

results from large-eddy simulations in a complex three­
dimensional louver geometry. The three-dimensionality in the 
louver geometry occurs along the height of the fin, where the 
angled louver transitions to the flat landing and joins with the 
tube surface. The transition region is characterized by a swept 
leading edge and decreasing flow area between louvers. 
Preliminary results show a high energy compact vortex jet 
forming in this region. The jet forms in the vicinity of the louver 
junction with the flat landing and is drawn under the louver in 
the transition region. Its interaction with the surface of the 
louver produces vorticity of the opposite sign, which aids in 
augmenting heat transfer on the louver surface. The top surface 
of the louver in the transition region experiences large velocities 
in the vicinity of the surface and exhibits higher heat transfer 
coefficients than the bottom surface. 

INTRODUCTION 
In compact heat exchanger applications, air-side thermal 

resistance accounts for approximately 80 percent of the total 
resistance. Consequently, a larger surface area per unit volume, 
and heat transfer enhancement techniques in the form of 
interrupted or complex flow passages are mandatory in reducing 
the resistance to heat transfer. Fins have been primarily used to 
provide an extended surface area for heat transfer from the 
primary heat source or sink, which in most instances are flat or 
round tubes. Further, complex or interrupted flow passages in 
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fin geometries have been used to augment the fin heat transfer 
coefficient by maintaining a high temperature potential between 
the fin surface and air. This is achieved by thermal boundary 
layer restarts, and the inducement of large-scale coherent 
structures to enhance mixing in the vicinity of fin surfaces. 

One form of interrupted flow passage which has found 
wide spread use in heat exchanger applications is the louvered 
fin surface. A flat-tube louvered heat exchanger with rectangular 
channels is shown in Fig. 1. Most of the progress in studying 
this fin configuration has been made through experiments 
[Chang and Wang, 1997; Beauvais, 1965; Davenport, 1983; 
Zhang and Lang, 1989; Webb and Trauger, 1991; Achaichia and 
Cowell, 1988a; Springer and Thole, 1998; Dejong and Jacobi, 
1999] and it is only now that computational tools are beginning 
to play an important role. 

Several computational studies of multilouvered geometries 
have been reported since the 1980s. Various simplifying 
assumptions made in earlier studies have prevented the use of 
computations for complete and reliable predictions of 
multilouvered fins. These studies assumed louvers of zero 
thickness and/or fully-developed flow conditions [Achaichia 
and Cowell, 1988b], and/or Cartesian grids with a staircase 
louver surface [Baldwin et aI., 1987]. The late 80s and early 90s 
saw considerable progress in the Japanese automotive industry 
in simulating multilouvered geometries. Suga et al. [1989] and 
Suga and Aoki [1991] used considerable sophistication in their 
formulation on overlaid grids for representative multilouvered 
fins. The overlaid grids allowed the use of orthogonal grids 
aligned with the louvers. On the other hand, Hiramatsu et al. 



[1990] used oblique or body-fitted grids in the calculation 
domain. Halt et al. [1996] have used FLVENT-UNS with 
hybrid grids. While all the above studies assumed _ steady 
laminar flow, Achaichia et al. [1994] studied the flow pattern in 
multilouvered fins with the commercial code PHOENICS along 
with the k-e turbulence model for high Reynolds numbers. Tafti 
et al. [1999,2000] have applied time-dependent calculations to 
study flow transition in two-dimensional multilouvered 
geometries. They found that instabilities first appeared in the 
wake of the exit louver. Shortly thereafter, the flow became 
unstable near the exit louvers, and the instability then spread 
upstream into the bank. 

A 

sectionAA 

Fig. 1: Flat tube louvered heat exchanger with rectangular 
channels. Section A-A shows the two-dimensional cross-section of a 
fin. 

Large-Eddy Simulations (LES) 
Large-eddy simulation is playing an increasingly important 

role in the fundamental study of turbulent flows. By resolving 
only the energy containing eddies, LES reduces the 
computational complexity of Direct Numerical Simulations 
(DNS) by several orders of magnitude. However, the 
application of LES to complex flows still remains elusive for a 
number of -reasons. Chief among them is the high computational 
and huma!) cost of doing these simulations in complex 
geometries with complex physics. However, with the 
exponential increase in computational power in the last decade, 
the computational barrier is slowly but surely being broken 
down. The DOE/ASCI initiative, and the recent NSF Terascale 
initiative will provide multi-Terascale facilities for the US 
research community in a three-year time frame. 

Flows in compact heat exchangers are particularly 
conducive to the use of LES technology because the operating 
range of Reynolds numbers encountered is not very high. There 
are a number of approaches one could use in performing LES. 

One is to use explicit subgrid scale models. Another is to 
approach the problem from the point of view of a pseudo-DNS 
or LES with no sub grid scale model. The third approach is the 
use of Monotonic Integrated Large-Eddy simulations (MILES). 
A brief explanation of the three approaches is given here. 
Subgrid Scale Stress Models 

There are a number of subgrid scale models varying in 
complexity from eddy-viscosity to one equation models. Recent 
reviews can be found in Ferziger [1996] and Lesieur and Metais 
[1996]. The most widely used closure model, suggested by 
Smagorinsky [1963], is based on Boussinesq's approximation in 
which the subgrid-scale Reynolds stresses are related to the 
strain rate tensor of the resolved field through an eddy viscosity. 
The eddy viscosity is computed from the resolved strain rate 
magnitude and a characteristic length scale. The length scale is 
assumed to be proportional to the filter width via a Smagorinsky 
constant. Germano et al. [1991] proposed a dynamic procedure 
for the computation of the Smagorinsky constant. The dynamic 
procedure utilizes information from the resolved high 
wavenumber scales by applying a test filter in addition to the 
grid filter to obtain model constants. The original method has 
been extended to other subgrid scale models [Zang et aI., 1993]. 
The dynamic model has been found to be particularly useful in 
capturing the near wall behavior of turbulence and in 
transitional flows [Piomelli et aI., 1991], where previously a lot 
of hand tuning of model constants was necessary. The model 
has been tested extensively in flow simulations using spectral 
methods (Germano et aI., 1991; Piomelli, 1993; Piomelli and 
Lui, 1995). Several researchers also have applied the dynamic 
sub grid scale stress model with finite-difference approximations 
[Beudan and Moin, 1994; Akselvoll and Moin, 1995; Jordan 
and Ragab, 1993; Zang et aI., 1993]. However, a number of 
challenges remain in its application to complex turbulent flows. 
Chief among them are the treatment of inhomogeneous 
boundaries in devising the test filter [Najjar and Tafti, 1996b] 
and the localization ofthe model constant [Ghosal et aI., 1995]. 

Recent work has focused on subgrid stress models based on 
the similarity model of Bardina et al. [1983]. However, instead 
of approximating the full field (resolved + subgrid scales) by 
the resolved field, the subgrid scales are constructed from the 
filtered field by appropriate defiltering or a deconvolution [Liu 
et aI., 1994; O'Neil and Meneveau, 1997; Domaradzki and 
Saiki, 1997; Geurts, 1997; Domaradzki and Loh, 1999]. 
The MILES Approach 

An alternative to the use of explicit subgrid scale models 
for LES is the use of Monotonic Integrated Large-Eddy 
simulations (MILES) [Boris et aI., 1992]. These encompass a 
general class of methods which maintain the monotonicity (do 
not give rise to spurious oscillations) of the integrated field (also 
referred to as shock capturing schemes, total variation 
diminishing (TVD), essentially nonoscillatory, positivity 
preserving, shape preserving). They differ in detail but are 
designed to support the minimal diffusion that is required to 
preserve the shape of a distribution during transport. The most 
widely used monotonicity preserving criterion is the Total 

2 



Variational Dimishing (TVD) [Harten, 1984]. The TVD 
criterion is applied to the cell face values at time level n to 
generate a monotonic field at time level n+1. Leonard [1991] 
has argued that the TVD limiter is overly restrictive, and the 
application of monotonicity can be simplified and made much 
less restrictive if applied directly to the time-averaged face 
values. The Flux Corrected Transport [FCT] scheme of Boris 
and Book [1973] is similar in spirit. When used in this context, 
Leonard's universal limiter or more generally "flux limiting" 
scheme, allows the use of high-order methods in the calculation 
of cell face values. Thuburn [1996] has developed a multi­
dimensional version of Leonard's universal limiter for strongly 
deforming meteorological flows. 
LES with No Model 

In finite-volume and finite element discretizations, 
truncation errors dominate the high wavenumbers of the 
resolved flow. The use of upwind approximations, dissipate 
energy in the high wavenumbers. It has been shown 
convincingly [Naiiar and Tafti, 1996a, Mittal and Moin, 1997] 
that the use of explicit subgrid scale models with these schemes 
provides additional undesirable net dissipation. Schemes like 
the second-order central difference scheme on a staggered mesh 
[Harlow and Welch, 1965], conserve spectral energy but 
redistribute the energy in the spectrum. The use of this 
discretization has found favor in LES because in spite of errors, 
it maintains the integrity of the energy spectrum in the high 
wavenumbers of the resolved flow, better than dissipative 
schemes. However, in under resolved flows or flows in which 
substantial energy is contained in the near grid. and subgrid 
scales, the central-difference schemes are much more prone to 
instabilities. However, on the flip side, a stable calculation 
indicates that most of the energy is resolved by the grid. Hence 
LES with no model follows the philosophy that a stable finite­
volume numerical scheme does not need additional dissipation 
via a subgrid scale model to increase its prediction accuracy. 

Parallel Architectures and Programming Models 
Information technology is fast becoming one of the key 

enabling technologies for making new inroads into science and 
engineering. High performance parallel computing is an 
important subset of this field. Here we review some 
architectural trends and their implications on programming 
paradigms. 

Since their inception in the mid 60s to early 70' -s, parallel 
computers have been designed in a variety of configurations, 
differing in the organization of address space, interconnect 
network, and control mechanism for instructions. In the mid 
90's, distributed shared memory (DSM) architectures, which are 
hybrids between shared and distributed memory architectures, 
were introduced. The architecture combined shared memory 
processors at the node level, with distributed nodes 
interconnected by a network. The early DSM architectures were 
the HP-Convex Exemplar SPP Series and the SGI-Cray Origin 

2000. A variant of the DSM architecture is the idea of 
interconnecting shared memory processors (SMPs) in a 
distributed environment. This is now being extended to build 
supercomputers out of commodity NT or Linux PCs. 

Of the top 500 most powerful computers worldwide 
[Top500, 1999], 69 systems are clusters built with SMPs with 
more than 16 processors per node, such as the ASCI Blue 
system at Los Alamos, which contains 48 Origins, each with 
128 processors. The ASCI Blue Pacific SST at Lawrence 
Livermore consists of a 1464 node cluster of 4 way ffiM 
SP604e SMPs and in the acquisition stage is ASCI White, 
which will consist of 8 SMP processors per node. In addition, 
in the top 500 list there are 7 clusters built out of commodity 
parts and SMP nodes with less than 16 processors. It is also 
envisioned that clusters of DSMs and SMPs will be the 
architecture of choice for the NSF Terascale Initiative. 

Another development on the software side is that 
application programming paradigms are becoming much less 
dependent on the architectural aspects, hence increasing 
portability of codes, assuring a longer life span for software 
developed. In a clustered DSMlSMP environment, both 
distributed and shared memory programming models are 
feasible. Because of the cache-coherent globally shared address 
space within each SMP or DSM, a shared memory 
programming paradigm is feasible. An important development 
in this area is the OpenMP industry standard [KAI, 1997], 
which replaces vendor specific libraries. However, currently 
OpenMP has no extensions which can enable this paradigm 
across a cluster of SMPs or DSMs. Therefore one has to resort 
to distributed memory programming with explicit 
communication calls to message passing libraries like MPI 
[Gropp et aI., 1994; MPI2, 1997]. Although a distributed 
programming model, has a higher cost associated with its use 
than does shared memory programming on a single DSM or 
SMP, this paradigm imposes explicit data locality, which can 
have a significant positive impact on scalability. 

Another programming paradigm is to use both, distributed 
memory programming across a network, and shared memory 
programming inside each shared memory node or unit. The use 
of this hybrid paradigm does not limit one to these architectures 
but rather provides the flexibility of using both or either of these 
paradigms on other configurations with minimal effort. 

In addition to the use of the hybrid MPI-OpenMP across 
clusters of SMPs or DSMs, one can also use this paradigm 
within a single DSM unit like the SGI-Cray Origin 2000. 
Hybrid or embedded parallelism [Tafti and Wang, 1998] has 
several advantages over either distributed or shared memory 
parallelism. It can accommodate both coarse grained 
parallelism at the high level and fine grained parallelism 
underneath. It maps to the architectural features of a DSM 
architecture by keeping data locality explicit in the coarse­
grained parallelism and allowing the fine grained shared 
memory parallelism to take advantage of the data locality. 
Further, embedded parallelism also complements the concept of 
hierarchical domain decomposition [Smith et aI., 1996] for 
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cache friendly and scalable algorithms [Cai et ai., 1996; 
Anderson et ai., 1999; Wang and Tafti, 1998a-b, 1999]. 
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Fig. 2: Two~dimensional geometrical parameters in multilouvered 
tins. 

General Flow and Thermal Characteristics in Multilouvered 
Fins 

Fig. 2 shows a multilouvered fin with its characteristic 

dimensions. L: is the louver pitch, F; is the fin pitch, b * is 

the louver thickness, and () is the louver angle2. The heat 
transfer diaracteristics of the multi louvered geometry is 
governed by three important effects: 

a) Duct directed versus louver directed flow: When the 
bulk of the flow in the louver bank is aligned with the 
stream wise direction, it is referred to as duct directed flow. 
This was first recognized by [Davenport, 1983] and studied by 
other researchers in the field [Webb and Trauger, 1991]. Fig. 3 
illustrates the two cases. Duct directed flow has a detrimental 
effect on the heat capacity and heat transfer coefficient, since a 
very small fraction of the fluid flows between louver passages. 
On the other hand, louver directed flow has a large positive 
impact on the heat transfer coefficient. High Reynolds 
numbers, large louver angles. small fin pitches, and large 
louver pitches are conducive to louver directed flow. 

Rei,,=800. F,.=l.O. louver tlllg1e=20 deglT.'e s. b=O.l 

Fig. 3: Mean thermal tields illustrating (a) duct flow; (b) louver 
directed flow. 

2 Dimensionai quantities are denoted by the superscript * . 

b) Onset of unsteadiness: The onset of unsteadiness 
augments the heat transfer coefficient [Zhang et. ai, 1997a-b]. 
Fig. 4 compares the heat flux distribution on a louver at two 
Reynolds number. At the lower Reynolds number the bottom 
surface of the louver has a large recirculation zone, which 
becomes unstable at the higher Reynolds number. The 
instability leads to the periodic shedding of large scale 
spanwise vortical structures, which enhance mixing near the 
louver surface [Tafti, 1993]. This is reflected in the sharp jump 
in the heat flux distribution on the bottom louver surface. 
Large louver angles, large ratios of fin pitch and fin thickness 
relative to louver pitch lead to the earlier onset of 
unsteadiness. 

O.8l7~e 
0.761231 
0.841028 
0.512821 
0.3&&815 
0.25841 
O.12e205 
o 

~ 

~ ~" 
rrd liMo/<., N~_.;')tl 
N,."_.,.,,Nr,E.'II_' 

&20 -...:;_ 

I:: ,=~,=,::=J 
~,~/ 
~ --" .. .,""'1<>." ... """",,""" 

-"".!tw'T'_rIot .. ,. 

(a) (b) 
Fig. 4: Instantaneous z-vorticity and temperature contours for 
two Reynolds numbers. With the onset of vortex shedding, the 
thick thermal boundary boundary is destroyed. This results in a 
large increase in mean heat flux. 

c) Thermal wake interference: Fig. 5 illustrates the 
different types of thermal wake interference which can occur. 
Intra-fin interference occurs between louvers in the same fin, 
and is strong when the flow is duct directed. The interference 
of wakes from louvers upstream of the re-direction louver on 
downstream louvers of the same fin is yet another 
manifestation of intra-fin interference. This usually is of a 
secondary nature. Inter-fin interference occurs between 
adjacent rows of fins when the flow is louver directed. Both 
intra- and inter- types can have a large effect on the total heat 
capacity of the fin, whereas the latter does not have a large 
effect on the heat transfer coefficient. 

Rt',.=50. F,.=I.U. wlR'('r(ln~/l'=jOdegl'r!u. b=lU 

.~. 
R~ .. =800. F,.=I.O./ouwranRIt!=3()1/f'Rll!e.t. b=O,J 

Fig. 5: lllustration of intra-tin and inter-tin thermal wake 
interference. 
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These three phenomena can be captured with good 
precision in two-dimensional simulations. Effects (a) and (c) are 
primarily dependent on the two-dimensional geometrical 
parameters. The onset of unsteadiness is primarily a two­
dimensional phenomenon, which can either be classified as a 
wake or Kelvin-Helmholtz instability [Tafti, et aI., 2000], and 
can be resolved with accuracy in the initial stages of 
development. However, there is evidence [Zhang et aI., 1997a-

c], that as the Reynolds number increases beyond Re Dh (based 

on hydraulic diameter) of around 2000-2500, secondary three­
dimensional instabilities might be important. The intrinsic 
three-dimensionality, which develops in the flow field, cannot 
be resolved with two-dimensional simulations. It has the effect 
of diffusing the coherence of the vortical structures, which 
travel along the louver surface and reduce their effectiveness in 

enhancing heat transfer. For Reynolds numbers, Re Dh > 2500, 

this effect may be important. However there has not been any 
systematic evaluation of this effect, partly because the operating 
range of multilouvered heat exchangers does not exceed far 
beyond this point, and partly because of the high cost and 
complexity of doing three-dimensional simulations in this 
geometry. 

Other. than the intrinsic three-dimensionality that could 
develop at high Reynolds numbers, additional three­
dimensionality is inherent in the multilouvered geometry near 
the junction of the louver with the tube surface, along the height 
of the fin. The angled louver transitions to a flat landing, which 
extends to the tube surface as shown in Fig. 6. The~xtent of the 
transition region is estimated to be 0.5 L" based on structural 

p 

properties and the manufacturing process used [Halt, 1999]. A 
consequence of the manufacturing process is that the leading 
edge of the louver in the transition region instead of being 
perpendicular to the oncoming flow now exhibits an angle to 
the flow direction, which is given by 90-tan-I[1I{I-cos8}], 

, where 8 is the louver angle. For a 25 degree louver this angle is 
5.4 degrees, whereas for a 20 degree louver it reduces to 3.5 
degrees. Also during the transition from the louver angle to the 
flat landing, the open flow area between two subsequent louvers 
is restricted and creates conditions for strong stream wise 
velocity acceleration in the region. The three-dimensional 
geometry could also have a large effect on the onset and spread 
of spatial instabilities. 

Our objective is to study the effect of the three-dimensional 
louver geometry in the transition zone on the flow and thermal 
fields generated. The paper describes aspects of the 
mathematical formulation, the algorithm, spatial discretizations, 
and the parallel linear solver. Preliminary results are presented. 

Fig. 6: Three-dimensional louver geometry near tube junction. 

NUMERICAL METHODOLOGY 

Mathematical Formulation and Governing Equations 
To calculate the flow and thermal fields, we map the 

Navier-Stokes and energy equations from physical (x) to 

logical/computational space (~) by a boundary conforming 

transformation x = x(~), where x = (x,y,z) and 

~ = (;,1],()' Based on the nomenclature of Thompson et aI. 

[1985], the transformed non-dimensional time-dependent 
incompressible Navier-Stokes and the energy equations are 
written in strong-conservative form as: 

Continuity: 

~(..j;uj)= 0 (1) 
O;j 

Momentum: 

(2) 

Energy: 

~ (..j;T) + ~ (..j;U j T ) = ~(_I_..j; g jk ~J 
at O;j O;j PrRe O;k (3) 

+ ..j;ST 
where a i are the contravariant basis vectors3, Ii is the 

Jacobian of the transformation, gij is the contravariant metric 

tensor, ..fiu j = ..fi{a/ ~i is the contravariant flux vector, U; is 

the Cartesian velocity vector, T is the temperature, S"i and 

Sr are the source terms in the momentum and energy equations, 

respecti vel y. 

3 The notation (a/ ) is used to denote the i-tlz component of vector a j . 
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Formulation for Fully-Developed Flow and Heat Transfer 
For computational purposes we approximate the louvered 

fin geometry by an infinite array of louvers, which results in a 
simpler system with periodic repetition of the basic unit. The 
unit computational domain for the base louver geometry is 
shown in Fig. 7. 

Eqns. (1), (2) and (3) are non-dimensionalized by a 
characteristic length scale, which in this case is taken to be the 

louver pitch, L~, the friction velocity u; = ~ M'x· / p as the 

velocity scale, and q". L~ / k as the temperature scale. Here, 

Mx' is the pressure gradient in the x- direction, q". is the 

specified dimensional constant heat flux on the louver surface, 
and k is the thermal conductivity of the fluid. The above non­
dimensionalization results in a Reynolds number based on 

friction vel~city ReT = u;L~ / v, and Prandtl number Pr = 

via, where v and a are the kinematic viscosity and thermal 
diffusivity of the fluid, respectively. 

Fig. 7: Computational domain consisting of one louver 
representing an infinite array of louvers put together in the 
streamwise and cross-stream directions. 

The application of periodic boundary conditions in the 
streamwise direction requires that pressure and temperature be 
re-formulated as in Patankar et al. [1977]: 

P(x,y,t) = P;n - /1x+ p(x,y,t) 

T(x,y,t) = 1';n + y.t+a(x,y,t) 
(4) 

where Pin and T;n are specified at the inlet of the computational 
domain, [3=1 and y = q"Q f fReT PrQxLp 4 are non-

dimensional streamwise gradients of pressure and temperature, 
respectively, p and a are the modified non-dimensional 
pressure and temperature, Qx is the calculated mean flow in the 

x-direction, and Q f is the fin surface area. Hence, eqn. (2) for 

4With the non-dimensionalization used. q" and Lp take on a value of unity. 

the x-momentum balance can be written in terms of the 
modified non-dimensional pressure p with an additional source 
term S = 1, which accounts for the mean pressure gradient5. u, 

Similarly, eqn. (3) for the energy balance can be written in 
terms of the modified temperature a with an additional source 
term given by S T = -uy. Periodic boundary conditions can 

then be applied on p and a in the flow direction. At the louver 
surface, no slip and no penetration boundary conditions for the 
velocity, Neumann boundary condition of type 
Vp·ii =0 (5) 

for the modified pressure, and 

q~ =-Va·ii=q" +lix·ii (6) 

for the modified temperature are applied. In eqns. (5) and (6), 
ii is the outward unit vector normal to the louver surface, ~ f ' 

and ex is the unit vector in the x-direction. Further details of 

the re-formulation can be found in Zhang et al. [1997a]. 

Numerical Algorithm 
For the time integration of the discretized continuity and 

momentum equations, we use a projection method [Chorin, 
1968; Kim and Moin, 1985]. The temporal advancement is 
performed in two steps, a predictor step which calculates an 
intermediate velocity field, and a corrector step which 
calculates the updated divergence free velocity at the new time 
step. The predictor step can be fully explicit in time or semi­
implicit, in which the viscous terms are treated implicitly. Both 
methods are incorporated in the present computer program. The 
semi-implicit method is useful for low Reynolds number flows 
by allowing larger time steps than what would be allowed by the 
viscous stability condition. The corrector step, uses the 
continuity equation to formulate the pressure equation. The 
computed pressure is then used to update the intermediate 
velocity field. Symbolically, the two step procedure of the 
projection method can be written as follows:6 

Predictor step: 
The explicit treatment uses the second-order accurate 

Adams-Bashforth method, whereas the semi-implicit treatment 
uses a combination of Adams-Bashforth and Crank-Nicolson 
methods. First, momentum and energy fluxes across non­
matching interfaces are conserved to obtain the conserved 
quantity (u;)or (an). 
Explicit formulation: 

iii -(u;) =~H~ _~Hn-l, 
/),.t 2 I 2 I 

(7-a) 

where, 

5 The formulation fixes the mean pressure gradient and lets the flow rate adjust 
to balance the losses in the calculation domain. 

6 The energy equation is advanced in time by the predictor step. 
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Hi = - Jg a~i «(.fiUi)(ui) 

+_1 ~(_1 Ii it a(ui))+S 
.fi a~i Re g g a~t ., 

Semi-Implicit formulation 7: 

U _(un) 3 1 
i i=_H~ __ H~-1 

tlt 2' 2' 

1 1 ale it aUi a( uin ) 
+ 2 .fi a~i {Re V g g (a~t + a~t )} 

where Hi =-Jg a~J «(.fiUJ)(ui)+S./ 

(7-b) 

(8-a) 

(8-b) 

where the superscript - denotes the intermediate field. ( ). 

denotes quantities based on conservation of fluxes at non­
matching boundaries. n. the present time level. and n+ 1. the 
next time level. 
Corrector step: 

In this step. we use the continuity equation to derive the 
pressure equation. which is solved to obtain the pressure field at 
time level (n+J). The procedure used in formulating the 
pressure equation is represented as follows: 

First the intermediate cell face contravariant fluxes are 
constructed as follows 

/iDi =/i{ai)Jit (9) 

The contravariant flux is then conserved globally at non­

matching boundaries to obtain (lioJ). Then. th~ correction 

form of the nodal Cartesian velocities and cell face 
contravariant fluxes are written as: 

~+I = -. _ A (_i).(apn+
l

) u, u, ut a , :l 

(1~i 

(.fi(Ui),,+I) = (.fiOi) - tlt.fi gik/apn+l) 
\ a~k 

(10) 

(11) 

Finally. eqn. (11). in conjunction with eqn. (1). is used to 
derive the pressure equation. which takes the form: 

~{.figik(apn+I)} = 1 a(/iDi ) (12) 

a~i a~t!:lt a~i 
The pressure field at level n+ 1 is then used to correct the 

nodal Cartesian velocities and the cell face contravariant fluxes 
using eqns. (10) and (11). respectively. The use of ( ) on the 

pressure gradient term implies conservation of this quantity at 
non-matching interface boundaries. during the solution of eqn. 
(12). Hence • .[i(Ui)"+1 is automatically conserved when the 

71n the semi-implicit fonnulation. at the louver surface we use 
,.., n+l 0 - n+l ui = ui = in the momentum equations and a = a in the energy 
equation [Peyret and Taylor. 1985]. 

correction in eqn. (11) is applied to the conserved intermediate 
field. 

Spatial Discretization 
The above governing equations are discretized with a 

conservative finite-volume formulation. In non-orthogonal 
coordinate systems. there are a number of choices in the 
selection of the grid topology and the dependent variable in the 
momentum equations. In the current work, we adopt a 
nonstaggered grid topology with Cartesian velocities as 
dependent variables. The Cartesian velocities. pressure and 
temperature are calculated and stored at the cell center. whereas 
contravariant volume fluxes are stored and calculated at the cell 
faces. For geometric quantities. we calculate and store (.fiai) 
and the diagonal terms of (/i gij ) at the cell faces. and the off­

diagonal terms of (/i g ij) at the cell centers. Eqn. (7 -b) is 

approximated by second-order central-difference schemes (we 

drop the ( ) notation for convenience). 

.fiBj = (-.fiUIUi +_1 .figlk aui ) 
Re a~k i+1/2.j.k 

( r: lie Ik aUj ) - -vgU uj +-vgg -
Re a~k i-l/2,J,k 

+ -vgU uj +-vgg -( r: 2 1 C 2k aUj ) 

Re a~k j.j+1I2,k 

- -vgU uj+-vgg -( r: 2 1 C 2k aUj ) 

Re a~k j,j-1/2,k 

( 
C 3 I C 3k aUj ) + -vgU uj +-vgg -

Re a~k j.j.hI/2 

- -vgU uj+-vgg -( r: 3 1 C 3k aUj ) 

Re a~k j.j.k-1/2 

(13) 

where (i,j,k) denote the cell center. and i±1I2.j±1/2.k±1/2. 

the cell faces. Here. particular care is taken to maintain close to 
second-order accuracy on stretched orthogonal grids. For 
example. the values of Ui and /i gij (where i'" j) at cell faces 

are evaluated through the use of grid based interpolations. For 
example. the value of tPi+1/2.i,k at the ~+ cell face is interpolated 

as 

(14) 

Here. h:1I2,i,t and h:1/2,i.k are interpolation factors based on 

the arch length (ds ) along the ~ direction at cells (i,j,k) and 

(i+lj,k). 
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i+mI/2'k =ds. I 'k/(ds" k +ds' l 'k) , .J. 1+ .J. I.}. 1+ .J. 

i P1/2'k =ds" k /(ds" k +ds I 'k) 1+ .j. I.j. I.j. 1+ .j. 

(15a) 

(15b) 

For the pressure equation, the source terms are evaluated 
from a local balance of the intermediate volume fluxes at cell 
faces surrounding the finite volume, and the coefficient matrix 
is constructed from the left hand side of eqn. (12), which is 
similar to the diffusion terms in eqn. (8-a). 

d jk dp"+1 
(d~j {.[i g d~k} 

=(.[iglk~J _(.[iglk~J (16) 
d~k i+1/2.j.k d~k i-1I2.j.k 

+(.[ig2k~J _(.[ig2k~J 
d~k i,j+1/2.k d~k i.j-ll2,k 

+(.[ig3k~J _(.[ig3k~J 
d~k i.j.k+1I2 d~k i.j.k-1/2 

For illustration purposes, we only discretize the first term in 
eqn. (16): 

( .[ig'k :~ 11l2,j'k = (.[igltI/2. j.{ ~~ lI/2.j.k 

+ /;:1I2.j.k (.[i g 12 L.j.k( :~ J. . 
,+I./,k (17) 

+ /;:'tI2.j.k (.[i g 12 L.k( :~ J .. 
I.}.k 

+ /;:1/2.j.k (.[i gl3 L.j.k( :~ J. . 
1+l.j,k 

+ /;:'1/2.j,k (.[i g 13 L.k( :~ J .. 
I.).k 

Since we store and calculated the diagonal terms of 
(.[i g}k ) at their corresponding cell faces, and the off-diagonal 

terms at the cell centers, we will only need to discretize the first 
derivatives of the pressure in the above equation: 

( ~;) = Pi+l.j,k - Pi,j.k 
i+1/2.j,k 

(18a) 

( ~p) =(Ji~+1I2'kPi,j+t.k + f/~+1/2'kPi.j.k) 
uTJ i.j.k (18b) 

~ (Ji~-ll2.k Pi.j.k + f/~-1/2.k Pi.j-l.k) 

( ~P ) = (/;:I.j+1/2.k Pi+l.j+l,k + .f/:l.j+1/2.k Pi+l.j,k ) 
TJ i+l,j.k 

(18c) 

- V:l,j-1/2,k Pi+l,j,k + /;:.j-1/2.k Pi+l,j-l,k ) 

( ~~) = (Ji~.k+II2Pi.j'k+l + fi~'k+II2Pi,j.k) 
U,:> i.j.k (18d) 

- (Ji~.k-1/2 Pi.j.k + fi~.k-l/2 Pi,j.k-l) 

( ~~) = (Ji:l.j,k+1/2Pi+l.j.k+l + /;:I.j.k+1/2Pi+l,j.k) 
i+l.j.k (18e) 

Finally, eqn. (16) can be recast into the following compact 
form of 19 non-zero coefficients: 

(19) 

where A denotes the coefficient matrix, the subscript P denotes 
the main diagonal term, and nb denotes neighboring off­
diagonal terms of the pressure coefficient matrix. Typically, for 
the present calculations the convergence criterion used is 1.e-5 
based on the L/ norm of the residual. 

Solution of Pressure Equation 
The Laplacian operator in eqn. (19), which is constructed 

based on grid based interpolations, makes the resulting linear 
system nonsymmetric on nonorthogonal grids. Further, the 
presence of nonconformal or non-matching boundaries creates 
additional strong nonsymmetries. There are many varieties of 
algorithms for solving large sparse systems of linear equations. 
These include sparse direct solvers, iterative solvers, including 
Krylov subspace methods with suitable preconditioners and 
multigrid methods [Axelsson, 1994]. In our work we use Krylov 
methods based on the method of Conjugate Gradients (CG) for 
symmetric systems and BiCGSTAB for nonsymmetric systems. 
These are coupled with powerful preconditioners based on a 
two-level Additive Schwarz domain decomposition (DD) 
method. 

By substructuring the original system into smaller systems, 
the DD method not only reduces the condition number of the 
original system, but also provided a natural avenue for 
parallelization. Many different algorithms are used with DD 
methods [Smith et aI., 1996]. Here we use the overlapping 
boundary method. In a one-level algorithm, the subdomains 
share information through the interface or the overlapping 
regions. The convergence rate, however, deteriorates as the 
number of sub-domains increase. In order to make the 
algorithms scalable, it is necessary to provide global coupling 
between distant sub-domains. One common practice is to use a 
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coarse space, and to solve an appropriate problem on the coarse 
grid. This approach is called two-level domain decomposition. 

For a system of linear equations given by, Ax = b , where 
for simplicity it is assumed that the coefficient matrix A is 
symmetric positive definite and that the conjugate gradient 
(CG) method can be applied8. If a non-singular matrix M can be 
made to approximate the matrix A in some way, the 
preconditioned system M -I Ax = M -I b, which has the same 
solution as the original system, can exhibit much better spectral 
properties or a lower condition number, resulting in faster 
convergence. 

The Additive Schwarz (AS) preconditioner involves 
solutions of smaller systems on subdomains in a domain 
decomposition approach. The domain Q is partitioned into N 
subregions {Q; ,i = 1, .... N} by extending one cell at each 

subdomain boundary. Let A; be the coefficient matrix defined 
on Q; and let the n; x n matrix R; represent the algebraic 

restriction of an n-vector on Q to a nj -vector on Q: ,and let 
I 

its transpose matrix Rr represent the extension of an n; -vector 

to a n-vector by padding with zeros. Further, we introduce 
another mesh on Q ,consisting of no cells. This new mesh is 

coarser than the original mesh, and it is denoted by Q~. We 

define Ao as the coefficient matrix on Q~, and we further 

introduce a no x n matrix Ro to restrict any fine-mesh vector 

into its corresponding coarse mesh vector (as in a two-level 
multigrid method). Let R~ be the transpose of Ro, then 

R~ prolongates a coarse mesh vector to a fine mesh vector. 

Then the additive Schwarz preconditioner is given by 
N N 

M-1 = LMj- 1 = LRr Aj-1Rj (20) 
j=O j=O 

It has been shown that the convergence rate of the Additive 
Schwarz PCG (ASPCG) method is independent of the fine-grid 
size and the coarse-grid size [Dryja and Wid lund, 1992]. 
However, an optimal preconditioner does not necessarily 
provide the least execution time or computational complexity. 
For example, the equation above requires exact solutions of 
subdomain problems and a coarse problem, and in general it is 
wasteful to solve these sub-problems exactly, particularly when 
the iterates are still far from the true solution. On the other 
hand, inexact sub-problem solvers often lead to improved 
execution time. Hence, we approximate ,4;-1 at the algebraic 

level, and the preconditioner is now given by 
N 

M-1 = '" RT'A.-1R (21) 
~ I I I 

;=0 

8 The Additive Schwarz preconditioner is not confined to the CG method but 
can be used with any other nonsymrnetric Krylov solver as well. 

;VI is obtained through a polynomial approximation (Dubois et 

al. 1979). Let A. = E. - F., then 
I I I 

,4;-1 = (~(E;-I F; Y)E;-I (22) 
)=0 

where m is the number of iterations of the polynomial 
preconditioner. In Wang and Tafti (1999), both Richarson or 
point Jacobi and Symmetric Successive Over-relaxation 
(SSOR) were evaluated as the inexact domain solves. 

Hence, in the ASPCG method, the global system on Q is 
solved by a Krylov method, and the preconditioner uses an 
Additive Schwarz method. Each sub-domain solve in the 
preconditioner is independent of the other sub-domains and 
hence provides a high degree of parallelism. Each time a sub­
domain is visited, a number of sweeps or iterations, mare 
performed on the sub-domain to relax the solution. At this point , 
the residue on Q; is restricted to the coarse level, Q~, and a 

similar relaxation is performed on the coarse level. The coarse 
level size no is equal to N, the number of sub-domains. After a 
fixed number of iterations, the correction from the coarse level , 
is prolongated back to Q; . The coarse level in this framework, 

works much like in multi grid algorithms. The key to the success 
of the method in realizing good cache performance is that the 
size n;, of each subdomain should be small enough to fit in 
cache (usually L2 or secondary cache), and the number of 
relaxation sweeps m should be as large as possible. Fig. 8-a 
from Wang and Tafti (1999), shows the optimal (minimum 
CPU time) performance gain obtained by the AS 
preconditioning versus global preconditioning for a Richardson 
or point-Jacobi smoother on a number of cache based 
architectures. The performance gain was largest on architectures 
with the greatest disparity in processor speed and memory 
bandwidth and latency. 

The ASPCG method was found to provide the following 
benefits [Wang and Tafti, 1999]: 
• Reduced the number of iterations for convergence in the 
Krylov solver by a factor of two to three, hence reducing the 
number of global inner products and matrix-vector products in 
the Krylov solver. 
• Increased performance by a factor of two-three. 
• Decreased the overall CPU time by nearly an order of 
magnitude. 
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Fig. 8: (a) Uniprocessor performance enhancement of ASPCG 
versus Global PCG on different microprocessor based 
architectures; (b) Parallel scalability of ASPCG on two ASCI 
platforms. 

The parallel implementation of the AS method is relatively 
straightforward. The additive algorithm provides a 'high degree 
of parallelism as well as data locality [Wang and Tafti. 1998b]. 
Fig. 8-b shows scalability studies on the ASCI Blue Origin 
2000 cluster at Los Alamos and ASCI Red Intel machine at 
Sandia for a model problem. The domain size on each processor 
is maintained at 1024x1024 cells. with 1024 sub-domains of 
size 32x32 for cache performance. The number of relaxation , 
sweeps on OJ is 40. and 100 on the coarse level, Q~. The 

calculations on the ASCI Blue are run across a cluster of 
Origins using only MPI (in and across Origins) or a 
combination of MPI-OpenMP. In the hybrid MPI-OpenMP 
model. MPI processes are not only used across Origins but 
within Origins as well. For each nproc (total number of 
processors used) in the figure. the multiple data points 
correspond to different combinations of MPI and OpenMp 
threads executed across different number of Origins. On the 
ASCI Red. OpenMp is used within each two processor node. In 
all cases. ASPCG shows excellent scalability and performance. 

Interpolation at Periodic Boundaries 
Periodic boundary conditions are implemented by utilizing 

ghost cells at the boundary of the calculation domain. Because 
of the restrictions put by the louvered geometry on the mesh. 
which has to conform to both the angled louver and the periodic 

box boundaries. the resulting mesh distribution on boundary 
planes (;+ - ;- and TJ+ - TJ- boundaries) do not match. Hence. 
each time periodic boundary conditions are applied. the values 
have to be interpolated from one face to the other. As a result. 
for each face we construct four bilinear interpolation matrices 
(one for cell centered variables. and one each for the three cell 
face fluxes). which map the solution vectors from one face to 
the other. Since the mesh is stationary. the mapping functions 
are calculated at the beginning and used throughout the 
calculation . 

Integral Adjustments at Periodic Boundaries 
Integral adjustments are used to account for the errors 

introduced during interpolations. At the beginning of each time 
step, momentum and energy fluxes are conserved at periodic 
boundaries by imposing the equality 

L(liul~ = L(.fiUl~ 
:+blk :-bIJ: 

(23) 

in the ;- direction, where ¢J = Uj or a are the interpolated 
values. The equality is used to obtain the conserved quantity 
<p. 

The intermediate volume fluxes in eqn. (9) are first 
calculated from the interpolated intermediate velocities. The 
calculated fluxes, however, do not satisfy the integral flux 
balance across the periodic boundary. 

(24) 

Therefore, a check is performed to identify and correct the 

integral flux imbalance to obtain (liD 1 ) • 

Basically. there are two choices to adjust the fluxes. One is 
to scale them proportionally and the other is to adjust them 
linearly. Proportional scaling may have difficulties when the 
mean mass flux across the boundary is close to zero, whereas 
linear adjustment (where a constant value is added) may smear 
recirculation zones near the interface. Since the present 
interpolation scheme is second order accurate, the interpolation 
error is very small. Therefore, we choose to adjust the volume 
flux linearly for the sake of robustness. However, for small 
values of liu 1 in eqn. (23), even a linear adjustment has the 

potential of leading to instabilities, since to obtain <p, the 
total flux needs to be divided by this quantity. 

For the pressure equation, the pressure at the ghost cell is 
first interpolated from the relevant boundary. This pressure then 
serves as a boundary condition for the interior values. For each 
iteration in the pressure equation solver, eqn. (17), or its 
equivalent, is first evaluated and then integrated over the 
relevant boundary. Ideally, the integral value of the pressure 
gradient at the east face should be equal to that at the west face. 
In reality. however, due to the interpolation error, this property 
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is usually not preserved. Based on the difference of the two 
integral values. a constant value is then added/subtracted to the. 
pressure at the ghost cells interior to the boundary in order to 
guarantee the equality of the two integral values. S·uch an 
adjustment automatically guarantees an integral flux balance for 
the updated volume fluxes in eqn. (11). 

Three-Dimensional Mesh and Parallel Decomposition 
Fig. 9 shows the three-dimensional louver geometry and the 

surface mesh for a louver angle of 25 degrees. fin pitch ratio of 
1.0. and louver thickness ratio of 0.1. The angled portion of the 
louver extends for 1.5 C • the transition zone for 0.5 L* • and the . p p 

flat landing for 0.25 L* to the tube wall. The computational 
p 

mesh consists of 98 zones each in .;- and TJ- directions. and 96 
zones in the z-direction along the fin height. The grid is 
clustered in the vicinity of the louver. in the transition zone and 
wall region. Fig. 9 shows the distribution of ~ versus z. The 
mesh is coarsest in the two dimensional region of the geometry 
and finest at the beginning and end of transition. and near the 
wall. A linear transition profile is assumed between the angled 
louver and the flat landing. As the louver transitions to the flat 
landing. the gap which exists between adjacent louvers (or 
between the leading and trailing edges of louvers and the 
calculation domain boundaries). closes completely. In a 
structured grid framework this results in a "collapsed grid" or a 
singularity at the location where the transition region meets with 
the flat landing. In order to avoid the singularity. we maintain a 
small gap of 0.0 13 L* at this junction. 

p 

The mesh is partitioned into sixteen pieces in the span wise 
z-direction. Each piece (98x98x6) is assigned to a processor in 
a distributed programming environment. 

Initial and Boundary Conditions 
Periodic boundary conditions are applied in the streamwise 

and cross-stream direction. Both the .;- and the TJ- direction 
boundaries are non-matching or nonconformal for the angled 
louver and transition region. and the interpolation and 
conservation procedures outlined in preceding sections are 
used. Once the louver transitions to the flat landing. the 
boundaries are conforming and no interpolations are necessary. 
It was found that in the region where the louver flattened out. 
and the flow aligned itself primarily to the streamwise direction. 
the small values of the cross-stream volume fluxes and velocity 
at the top and bottom boundaries in the TJ- direction produced 
instabilities during the application of eqn. (23) for the 
conservation of fluxes. Hence. the conservation of momentum 
and energy flux at non-matching boundaries is not strictly 
imposed. However. we note the errors introduced by this are 
minimal (o.f order Ix 10-4 to 1xlO-5 ) in the mean quantities. 

Oat landing ----, 
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Fig. 9: Computational geometry and mesh distribution. 

In the spanwise direction. symmetry boundary conditions 
are applied to the angled louver at z = -1.5. whereas no slip. no 
penetration wall boundary conditions are applied on the tube 
surface with a zero heat flux boundary condition. No slip. no 
penetration. constant heat flux boundary conditions are imposed 
on the louver. More details about the imposition of boundary 
conditions on the louver can be found in Tafti et al. [1999]. 

Initial conditions are obtained from an analogous two­
dimensional simulation over the angled louver. The two­
dimensional solution is reproduced in the spanwise direction 
along the height of the fin. Since the flow rate adjusts to the 
imposed pressure gradient. it is much more economical to run a 
separate two-dimensional simulation. which gives a fairly good 
estimate of the bulk flow velocity to begin with. than to 
simulate the same transient in the three-dimensional 
calculations. 

Computational Details 
The calculations are performed on 16 processors of SGI­

Cray Origin 2000. For cache performance in the pressure 
solver. each processor domain is broken up into virtual blocks 
of size 8x8x1. on which the Additive Schwarz preconditioner is 
applied. The coarse level on each processor is of size 12x12x6. 
The point Jacobi method is used for the inexact solves in each 
domain and on both the levels. The Reynolds number. Rer • is 

set at 400. which gives a bulk Reynolds number. based on the 
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calculated bulk velocity and louver pitch, of approximately 
1100. The time step used is 1 x 10-5 • After the initial transient 
during the first 10-20,000 time steps, the calculation takes 5.3 
JiSecs/time step/zone of wall clock time. This includes 
calculating the mean and rms statistics at each time step. 

RESULTS 
Fig. 10 plots the time evolution of the spatially averaged 

Nusselt number calculated on the louver surface. After the 
initial transient, the Nusselt number approaches a quasi­
stationary state at t = 2.0. Although, the flow may not be fully 
stationary, and further time integration may be necessary, it is 
highly unlikely that the essential flow and heat transfer 
characteristics will change substantially. Hence, for the results 
presented in this paper, it is assumed that the flow is near 
stationarity, and the mean quantities presented will be within 5-
10 % of their final values. The mean quantities are obtained by 
averaging for the last two non-dimensional time units (from t = 
2-4). 
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Fig. 10: Temporal evolution of the spatially averaged Nusselt 
number. 

Instantaneous Flow Structures 
Two types of identifiable coherent structures can be found 

in the flowfield. Spanwise vortices generated at the leading 
edge of the louver are found on the top surface. These develop 
from leading edge shear layer instabilities. Fig. Il(a-b) shows 
the plot of instantaneous streamlines in (- or z- planes at two 
locations along the fin height. Near the symmetry line at z = -
0.97, the flow is mostly two-dimensional in nature. Two 
vortices are found to exist on the louver surface, one of which 
has been shed from the shear layer, and the other which is 
forming. In the middle of the transition zone (z = 0.25), the flow 
is strongly three-dimensional as evidenced by the streamline 
patterns and the spanwise vortices are weakened considerably. 
Only a much smaller, downstream vortex is visible. 

...o..:r __ .... ~ ~ ~ 
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(a) (b) 
Fig. 11: Instantaneous streamlines in two z- planes (a) on the 
angled portion of the louver; (b) and in the middle of the transition 
zone. 

Fig. 12: Instantaneous streamtubes injection near the leading edge 
of the louver near the junction with the flat landing. 

In the region where the louver meets the flat landing, strong 
positive coherent streamwise vorticity is produced in the wake 
of the louver. The vortex is drawn to the bottom side of the 
following louver. Although, the core of the vortex is small, it is 
very energetic. As it passes over the surface of the louver, its 
interaction with the louver surface produces additional 
streamwise vorticity of the opposite sign. Fig. 12 shows a 
snapshot of instantaneous stream tubes injected in the leading 
edge region of the louver. The streamwise vorticity starts out 
near the leading edge but diffuses quickly as it travels 
downstream. It moves across the transition region from z = 0.4 
to 0.2, in the direction away from the flat landing. The origin of 
this structure is studied in more detail in the following section. 
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Fig. 13: Mean planar streamlines superimposed on mean thermal 
field on a z-plane cutting through the angled louver. 

Time Averaged Flow and Thermal Fields 
Fig. 13 plots the mean streamlines superimposed on 

thermal field at z = -0.97. A recirculation zone exists on the top 
surface. The thermal boundary layer on the top surface is 
thicker than that on the bottom surface of the louver. Generally, 
the effect of the large-scale vortices is to shorten the 
recirculation region and enhance heat transf~r downstream of it. 
On the bottom surface, because the oncoming flow impinges 
near the leading edge, the thermal boundary layer is thinnest in 
this region and increases downstream. The general flow is quite 
well louver directed at this Reynolds number and thermal wake 
effects on heat transfer are weak. It is only after the thermal 
wake is considerably weakened or diluted that it. impinges on 
the top leading edge of the louver. 
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(a) (b) 
Fig •. 14: Magnified view of velocity vectors at the trailing and 
leadmg edge of the louver in the transition region at z = 0.34. 

As the louver transitions to the flat landing, the effective 
flow area available between two louvers progressively 
decreases. Also, the trailing and leading edges of the louver, 
gradually align themselves in the same horizontal plane. Fig. 14 
shows th~ velocity vectors in a z- plane at z = 0.34 at the trailing 
and leadlOg edge of the louver. Because of the restricted flow 
area, there is strong flow acceleration at the trailing edge of the 
l~uver. !he. accelerating flow coming off the trailing edge 
directly ImplOges on the leading edge near the top of the louver. 
Part of the stream accelerates to the top louver surface and part 

?f it is drawn underneath. The part which accelerates to the top 
IS much closer to the louver surface, than the part at the bottom 
which is far from the louver. The part which accelerates to the 
bottom of the louver, picks up streamwise vorticity and 
manifests itself as a jet of concentrated vorticity, which is 
shown instantaneously in Fig. 12. As a consequence of the 
strong acceleration and distance from the bottom surface, a 
streamwise recirculation zone forms on the bottom surface, 
which exists from z = 0.21 to z = 0.45. Fig. 15 at z = 0.28, 
shows the magnitude of streamwise velocity. The blue region on 
the lower surface is the recirculation zone. The high velocity 
stream which is drawn downward is sandwiched between the 
negative low velocity wake from the trailing edge. There is also 
evidence of strong velocity acceleration on the top surface of 
the louver near the trailing edge. 

Fig. 15: Magnitude of streamwise velocity at z = 0.28 in the 
transition region. 

Fig. 16(a-d) shows thermal fields at z = 0.21, 0.28, 0.375, 
and 0.435 in the transition region. One of the consequences of 
the louver flattening out is the thermal wake from the louver 
starts interfering with the bottom surface of the louver 
immediately downstream of it. Hence in this region, the 
combination of the thermal wake effect and the streamwise 
recirculation reduce the heat transfer coefficient on the lower 
surface of the louver. On the other hand, the accelerating 
velocity field on the top surface and its close proximity to the 
louver surface increases the heat transfer coefficient. This can 
be surmised by the relatively thin thermal boundary layer on the 
top surface. 

Fig. 17(a-d) plots the streamwise vorticity calculated from 
the time averaged flowfield at different x- planes. The first 
plane at x = -0.5 lies upstream of the leading edge of the louver 
or downstream of the trailing edge of the preceding louver. 
Strong coherent streamwise vorticity centered about z = 0.38 
~nd y = -0.05 is found in this plane. This vorticity first appears 
10 the wake of the preceding louver at x = 0.486. As the vortex 
jet moves along the bottom surface of the louver, its interaction 
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with the louver surface produces another coherent structure of 
the opposite sign. This is visualized at x = -0.3 which is 
downstream of the louver leading edge. The structure with 
negative x- vorticity is much larger than the original jet but 
weaker and more diffuse. It extends from z = 0.24 to 0.44 and is 
centered around y = -0.08. By this time the original jet has 
diffused considerably. At x = 0.1, which is near the center of the 
louver, the secondary vorticity is still present, whereas there is 

no sign of the original jet9. By x = 0.3 the secondary vortex has 
weakened considerably and its center has moved to z = 0.29. 
Fig. 18 plots the three-dimensional streamlines which capture 
the vorticity at the bottom of the louver. The seeds are injected 
at x = -0.47, between z = 0.29 and 0.51, just below and 
downstream of the edge ,;..o,...f_th_e_l_o_u_ve_r_. __ ...,.....-_--,-, 

Fig. 16: Mean thermal fields at z = 0.21, 0.28, 0.375, and 0.435 in 
the transition region. As the louver flattens out, the thermal wake 
of the preceding louver interferes with the bottom surface. 

In Fig. 19 the mean temperature contours are plotted in x­
planes, x = -0.3, 0.1, and 0.3, which coincide with those in Fig. 
17. In all cases the thermal boundary layer is thinner, signifying 
heat transfer augmentation, in the region where the secondary 
vorticity impinges (upstream of the vortex core) or brings in 
fluid to the louver surface. We also find evidence of thermal 
wake interference from the previous louver in this region at x = 
-0.3. However, by x = 0.1, the thermal wake is considerably 
attenuated. 

Fig. 20 plots the time mean Nusselt number on the top and 
bottom surface of the louver in the transition region and the flat 
landing. On the bottom surface, two main patterns are evident. 

9 Flow animations show that the jet is quite unsteady in the downstream 
half so even though it may be present instantaneously, the time averaged flow 
may not be able to reproduce it. 

One of them follows the same trajectory as the jet in Fig. 18. In 
this pattern, the Nusselt numbers are low in the leading edge 
central core region, and gradually increase in the downstream 
direction, and as one moves outward from the core. The low 
Nusselt numbers are a consequence of the stream wise 
recirculation zone which forms at the bottom of the louver near 
the leading edge and also the effect of the thermal wake from 
the previous louver. The other pattern of higher Nusselt 
numbers is positioned between the jet and the flat landing. Over 
here the Nusselt numbers are higher and increase as we move 
downstream along the louver surface. This is a consequence of 
the secondary vorticity generated by the vortex jet and its 
motion which brings in free-stream fluid near the louver 
surface. 

0.568 

0.0468 

0.568 

.0.044 

0.11468 

0.0044 

.0.5 
.0.044 

Fig. 17. Contours of mean x-vorticity at x- planes starting 
upstream of the leading edge of the louver and moving 
downstream. Only the region below the louver in the transition 
region is shown. 

On the top surface, the Nusselt numbers are about an order 
of magnitude higher in the leading edge region and gradually 
decrease in the downstream direction. As the trailing edge is 
approached it increases again. Both these effects are attributed 
to the high fluid velocities in the proximity of the louver surface 
and their effect on the heat transfer coefficient. 
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Large-eddy simulations of flow and heat transfer are 
performed in a complex multilouvered fin. The numerical 
algorithm, discretization procedures, the treatment of flow 
variables at non-matching interfaces, and the parallel computing 
technology are described. A single periodic angled louver, its 
transition to a flat landing, and the tube surface are simulated. 
The complex domain is resolved by 1 million zones and the 
calculations are performed in parallel on 16 processors of the 
SGI-Cray Origin 2000. 

Preliminary results are given for a louver angle of 25 
degrees, fin pitch and thickness ratio of 1.0 and 0.1, 
respectively, and a Reynolds number of 1100, based on the bulk 
flow velocity and louver pitch. The flow in the transition region 
is strongly three-dimensional and unsteady. A number of new 
flow features are identified in the transition region which have a 
large effect on the heat transfer coefficient. Chief among them 
is the generation of a vortex jet in the region where two louvers 
come together with the flat landing. 

Future work will focus on gaining a deeper understanding 
of this flow. The effects of geometry variations and Reynolds 
number will be investigated to quantify the effect on heat 
transfer, not only on the louver, but also on the tube surface. 
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