25,101 research outputs found

    Crystal growth and quantum oscillations in the topological chiral semimetal CoSi

    Get PDF
    We survey the electrical transport properties of the single-crystalline, topological chiral semimetal CoSi which was grown via different methods. High-quality CoSi single crystals were found in the growth from tellurium solution. The sample's high carrier mobility enables us to observe, for the first time, quantum oscillations (QOs) in its thermoelectrical signals. Our analysis of QOs reveals two spherical Fermi surfaces around the R point in the Brillouin zone corner. The extracted Berry phases of these electron orbits are consistent with the -2 chiral charge as reported in DFT calculations. Detailed analysis on the QOs reveals that the spin-orbit coupling induced band-splitting is less than 2 meV near the Fermi level, one order of magnitude smaller than our DFT calculation result. We also report the phonon-drag induced large Nernst effect in CoSi at intermediate temperatures

    The Effect of wake Turbulence Intensity on Transition in a Compressor Cascade

    Get PDF
    Direct numerical simulations of separating flow along a section at midspan of a low-pressure V103 compressor cascade with periodically incoming wakes were performed. By varying the strength of the wake, its influence on both boundary layer separation and bypass transition were examined. Due to the presence of small-scale three-dimensional fluctuations in the wakes, the flow along the pressure surface undergoes bypass transition. Only in the weak-wake case, the boundary layer reaches a nearly-separated state between impinging wakes. In all simulations, the flow along the suction surface was found to separate. In the simulation with the strong wakes, separation is intermittently suppressed as the periodically passing wakes managed to trigger turbulent spots upstream of the location of separation. As these turbulent spots convect downstream, they locally suppress separation. © 2014 Springer Science+Business Media Dordrecht

    On-demand Multipath Routing Protocols for Mobile Ad-Hoc Networks: A Comparative Survey

    Get PDF
    A Mobile Ad Hoc Network (MANET) is an infrastructure-less, self-organized and multi-hop network with a rapidly changing topology causing the wireless links to be broken at any time. Routing in such a network is challenging due to the mobility of its nodes and the challenge becomes more difficult when the network size increases. Due to the limited capacity of a multi-hop path and the high dynamics of wireless links, the single-path routing approach is unable to provide efficient high data rate transmission in MANETs. The multipath routing is the routing technique of using multiple alternative paths through a network. Furthermore, whenever a link failure is detected on a primary route, the source node can select the optimal route among multiple available routes. Therefore, the multipath routing approach is broadly utilized as one of the possible solutions to overcome the single-path limitation. Most of the multipath routing protocols are based on Ad Hoc On-Demand Distance Vector (AODV). The objective of this paper is to provide a survey and compare sets of multipath routing protocols for mobile ad-hoc networks. This survey will motivate the design of new multipath routing protocols, which overcome the weaknesses identified in this paper

    Observation of longitudinal and transverse self-injections in laser-plasma accelerators

    Full text link
    Laser-plasma accelerators can produce high quality electron beams, up to giga-electronvolts in energy, from a centimeter scale device. The properties of the electron beams and the accelerator stability are largely determined by the injection stage of electrons into the accelerator. The simplest mechanism of injection is self-injection, in which the wakefield is strong enough to trap cold plasma electrons into the laser wake. The main drawback of this method is its lack of shot-to-shot stability. Here we present experimental and numerical results that demonstrate the existence of two different self-injection mechanisms. Transverse self-injection is shown to lead to low stability and poor quality electron beams, because of a strong dependence on the intensity profile of the laser pulse. In contrast, longitudinal injection, which is unambiguously observed for the first time, is shown to lead to much more stable acceleration and higher quality electron beams.Comment: 7 pages, 7 figure

    Joint exploration model based light field image coding: A comparative study

    Full text link
    © 2017 IEEE. The recent light field imaging technology has been attracting a lot of interests due to its potential applications in a large number of areas including Virtual Reality, Augmented Reality (VR/AR), Teleconferencing, and E-learning. Light Field (LF) data is able to provide rich visual information such as scene rendering with changes in depth of field, viewpoint, and focal length. However, Light Field data usually associates to a critical problem - the massive data. Therefore, compressing LF data is one of the main challenges in LF research. In this context, we present in this paper a comparative study for compressing LF data with not only the widely used image/video coding standards, such as JPEG-2000, H.264/AVC, HEVC and Google/VP9 but also with the most recent image/video coding solution, the Joint Exploration Model. In addition, this paper also proposes a LF image coding flow, which can be used as a benchmark for future LF compression evaluation. Finally, the compression efficiency of these coding solutions is thoroughly compared throughout a rich set of test conditions

    Fixed Price Approximability of the Optimal Gain From Trade

    Get PDF
    Bilateral trade is a fundamental economic scenario comprising a strategically acting buyer and seller, each holding valuations for the item, drawn from publicly known distributions. A mechanism is supposed to facilitate trade between these agents, if such trade is beneficial. It was recently shown that the only mechanisms that are simultaneously DSIC, SBB, and ex-post IR, are fixed price mechanisms, i.e., mechanisms that are parametrised by a price p, and trade occurs if and only if the valuation of the buyer is at least p and the valuation of the seller is at most p. The gain from trade is the increase in welfare that results from applying a mechanism; here we study the gain from trade achievable by fixed price mechanisms. We explore this question for both the bilateral trade setting, and a double auction setting where there are multiple buyers and sellers. We first identify a fixed price mechanism that achieves a gain from trade of at least 2/r times the optimum, where r is the probability that the seller's valuation does not exceed the buyer's valuation. This extends a previous result by McAfee. Subsequently, we improve this approximation factor in an asymptotic sense, by showing that a more sophisticated rule for setting the fixed price results in an expected gain from trade within a factor O(log(1/r)) of the optimal gain from trade. This is asymptotically the best approximation factor possible. Lastly, we extend our study of fixed price mechanisms to the double auction setting defined by a set of multiple i.i.d. unit demand buyers, and i.i.d. unit supply sellers. We present a fixed price mechanism that achieves a gain from trade that achieves for all epsilon > 0 a gain from trade of at least (1-epsilon) times the expected optimal gain from trade with probability 1 - 2/e^{#T epsilon^2 /2}, where #T is the expected number of trades resulting from the double auction

    Angular momentum evolution in laser-plasma accelerators

    Get PDF
    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extend in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laser- plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular momentum growth and we present experimental results showing that the angular momentum content evolves during the acceleration

    On spherical twisted conjugacy classes

    Full text link
    Let G be a simple algebraic group over an algebraically closed field of good odd characteristic, and let theta be an automorphism of G arising from an involution of its Dynkin diagram. We show that the spherical theta-twisted conjugacy classes are precisely those intersecting only Bruhat cells corresponding to twisted involutions in the Weyl group. We show how the analogue of this statement fails in the triality case. We generalize to good odd characteristic J-H. Lu's dimension formula for spherical twisted conjugacy classes.Comment: proof of Lemma 6.4 polished. The journal version is available at http://www.springerlink.com/content/k573l88256753640
    • …
    corecore