39 research outputs found

    Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter

    Get PDF
    In situ chlorophyll fluorometers have been widely employed for more than half a century, and to date, it still remains the most used instrument to estimate chlorophyll-a concentration in the field, especially for measurements onboard autonomous observation platforms, e.g., Bio-Argo floats and gliders. However, in deep waters (> 300 m) of some specific regions, e.g., subtropical gyres and the Black Sea, the chlorophyll fluorescence profiles frequently reveal “deep sea red fluorescence” features. In line with previous studies and through the analysis of a large data set (cruise transect in the South East Pacific and data acquired by 82 Bio- Argo floats), we show that the fluorescence signal measured by a humic-like DOM fluorometer is highly correlated to the “deep sea red fluorescence.” Both fluorescence signals are indeed linearly related in deep waters. To remove the contribution of non-algal organic matter from chlorophyll fluorescence profiles, we introduce a new correction. Rather that removing a constant value (generally the deepest chlorophyll a fluorescence value from the profile, i.e., so-called “deep-offset correction”), we propose a correction method which relies on DOM fluorometry and on its variation with depth. This new method is validated with chlorophyll concentration extracted from water samples and further applied on the Bio-Argo float data set. More generally, we discuss the potential of the proposed method to become a standard and routine procedure in quality-control and correction of chlorophyll a fluorescence originating from Bio-Argo network

    Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors

    Get PDF
    Chlorophyll fluorometers provide the largest in situ global data set for estimating phytoplankton biomass because of their ease of use, size, power consumption, and relatively low price. While in situ chlorophyll a (Chl) fluorescence is proxy for Chl a concentration, and hence phytoplankton biomass, there exist large natural variations in the relationship between in situ fluorescence and extracted Chl a concentration. Despite this large natural variability, we present here a global validation data set for the WET Labs Environmental Characterization Optics (ECO) series chlorophyll fluorometers that suggests a factor of 2 overestimation in the factory calibrated Chl a estimates for this specific manufacturer and series of sensors. We base these results on paired High Pressure Liquid Chromatography (HPLC) and in situ fluorescence match ups for which non-photochemically quenched fluorescence observations were removed. Additionally, we examined matches between the factory-calibrated in situ fluorescence and estimates of chlorophyll concentration determined from in situ radiometry, absorption line height, NASA’s standard ocean color algorithm as well as laboratory calibrations with phytoplankton monocultures spanning diverse species that support the factor of 2 bias. We therefore recommend the factor of 2 global bias correction be applied for the WET Labs ECO sensors, at the user level, to improve the global accuracy of chlorophyll concentration estimates and products derived from them. We recommend that other fluorometer makes and models should likewise undergo global analyses to identify potential bias in factory calibration

    A novel near real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances

    Get PDF
    An array of Bio-Argo floats equipped with radiometric sensors has been recently deployed in various open ocean areas representative of the diversity of trophic and bio-optical conditions prevailing in the so-called Case 1 waters. Around solar noon and almost everyday, each float acquires 0-250 m vertical profiles of Photosynthetically Available Radiation and downward irradiance at three wavelengths (380, 412 and 490 nm). Up until now, more than 6500 profiles for each radiometric channel have been acquired. As these radiometric data are collected out of operator’s control and regardless of meteorological conditions, specific and automatic data processing protocols have to be developed. Here, we present a data quality-control procedure aimed at verifying profile shapes and providing near real-time data distribution. This procedure is specifically developed to: 1) identify main issues of measurements (i.e. dark signal, atmospheric clouds, spikes and wave-focusing occurrences); 2) validate the final data with a hierarchy of tests to ensure a scientific utilization. The procedure, adapted to each of the four radiometric channels, is designed to flag each profile in a way compliant with the data management procedure used by the Argo program. Main perturbations in the light field are identified by the new protocols with good performances over the whole dataset. This highlights its potential applicability at the global scale. Finally, the comparison with modeled surface irradiances allows assessing the accuracy of quality-controlled measured irradiance values and identifying any possible evolution over the float lifetime due to biofouling and instrumental drift

    Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications

    Get PDF
    Since 2012, an array of 105 Biogeochemical-Argo (BGC-Argo) floats has been deployed across the world’s oceans to assist in filling observational gaps that are required for characterizing open-ocean environments. Profiles of biogeochemical (chlorophyll and dissolved organic matter) and optical (single-wavelength particulate optical backscattering, downward irradiance at three wavelengths, and photosynthetically available radiation) variables are collected in the upper 1000m every 1 to 10 days. The database of 9837 vertical profiles collected up to January 2016 is presented and its spatial and temporal coverage is discussed. Each variable is quality controlled with specifically developed procedures and its time series is quality-assessed to identify issues related to biofouling and/or instrument drift. A second database of 5748 profile-derived products within the first optical depth (i.e., the layer of interest for satellite remote sensing) is also presented and its spatiotemporal distribution discussed. This database, devoted to field and remote ocean color applications, includes diffuse attenuation coefficients for downward irradiance at three narrow wavebands and one broad waveband (photosynthetically available radiation), calibrated chlorophyll and fluorescent dissolved organic matter concentrations, and single wavelength particulate optical backscattering. To demonstrate the applicability of these databases, data within the first optical depth are compared with previously established bio-optical models and used to validate remotely derived bio-optical products. The quality-controlled databases are publicly available from the SEANOE (SEA scieNtific Open data Edition) publisher at https://doi.org/10.17882/49388 and https://doi.org/10.17882/47142 for vertical profiles and products within the first optical depth, respectively

    A BGC-Argo Guide: Planning, Deployment, Data Handling and Usage

    Get PDF
    The Biogeochemical-Argo program (BGC-Argo) is a new profiling-float-based, ocean wide, and distributed ocean monitoring program which is tightly linked to, and has benefited significantly from, the Argo program. The community has recommended for BGC-Argo to measure six additional properties in addition to pressure, temperature and salinity measured by Argo, to include oxygen, pH, nitrate, downwelling light, chlorophyll fluorescenceandtheopticalbackscatteringcoefficient.Thepurposeofthisadditionisto enable the monitoring of ocean biogeochemistry and health, and in particular, monitor major processes such as ocean deoxygenation, acidification and warming and their effect on phytoplankton, the main source of energy of marine ecosystems. Here we describe the salient issues associated with the operation of the BGC-Argo network, with information useful for those interested in deploying floats and using the data they produce. The topics include float testing, deployment and increasingly, recovery. Aspects of data management, processing and quality control are covered as well as specific issues associated with each of the six BGC-Argo sensors. In particular, it is recommended that water samples be collected during float deployment to be used for validation of sensor output

    From the shape of the vertical profile of in vivo fluorescence to Chlorophyll-a concentration

    Get PDF
    In vivo fluorescence of Chlorophyll-a (Chl-a) is a potentially useful property to study the vertical distribution of phytoplankton biomass. However the technique is presently not fully exploited as it should be, essentially because of the difficulties in converting the fluorescence signal into an accurate Chl-a concentration. These difficulties arise noticeably from natural variations in the Chl-a fluorescence relationship, which is under the control of community composition as well as of their nutrient and light status. As a consequence, although vertical profiles of fluorescence are likely the most recorded biological property in the open ocean, the corresponding large databases are underexploited. Here with the aim to convert a fluorescence profile into a Chl-a concentration profile, we test the hypothesis that the Chl-a concentration can be gathered from the sole knowledge of the shape of the fluorescence profile. We analyze a large dataset from 18 oceanographic cruises conducted in case-1 waters from the highly stratified hyperoligotrophic waters (surface Chl-a = 0.02 mg m(-3)) of the South Pacific Gyre to the eutrophic waters of the Benguela upwelling (surface Chl-a = 32 mg m(-3)) and including the very deep mixed waters in the North Atlantic (Mixed Layer Depth = 690 m). This dataset encompasses more than 700 vertical profiles of Chl-a fluorescence as well as accurate estimations of Chl-a by High Performance Liquid Chromatography (HPLC). Two typical fluorescence profiles are identified, the uniform profile, characterized by a homogeneous layer roughly corresponding to the mixed layer, and the non-uniform profile, characterized by the presence of a Deep Chlorophyll Maximum. Using appropriate mathematical parameterizations, a fluorescence profile is subsequently represented by 3 or 5 shape parameters for uniform or non-uniform profiles, respectively. For both situations, an empirical model is developed to predict the "true" Chl-a concentration from these shape parameters. This model is then used to calibrate a fluorescence profile in Chl-a units. The validation of the approach provides satisfactory results with a median absolute percent deviation of 33% when comparing the HPLC Chl-a profiles to the Chl-a-calibrated fluorescence. The proposed approach thus opens the possibility to produce Chl-a climatologies from uncalibrated fluorescence profile databases that have been acquired in the past and to which numerous new profiles will be added, thanks to the recent availability of autonomous platforms (profiling floats, gliders and animals) instrumented with miniature fluorometers

    Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a retrieval

    No full text
    Eight autonomous profiling floats equipped with miniaturized radiometers and fluorimeters have collected data in Pacific, Atlantic, and Mediterranean offshore zones. They measured in particular 0–400 m vertical profiles of the downward irradiance at three wavelengths (412, 490, and 555 nm) and of the chlorophyll a fluorescence. Such autonomous sensors collect radiometric data regardless of sky conditions and collect essentially uncalibrated fluorescence data. Usual processing and calibration techniques are no longer usable in such remote conditions and have to be adapted. The proposition here is an interwoven processing by which missing parts of irradiance profiles (due to intermittent cloud occurrence) are interpolated by accounting for possible changes in optical properties (detected by the fluorescence signal) and by which the attenuation coefficient for downward irradiance, used as proxy for [Chl a] (the chlorophyll a concentration), allows the fluorescence signal to be calibrated in absolute units (mg m-3).This method is successfully applied to about 600 irradiance and fluorescence profiles. Validation of the results in terms of [Chl a] is made by matchup with satellite (MODIS-A) chlorophyll (24.3% RMSE, N = 358). Validation of the method is obtained by applying it on similar field data acquired from ships, which, in addition to irradiance and fluorescence profiles, include the [Chl a] HPLC determination, used for final verification
    corecore