4,651 research outputs found

    Analytical theory of the dressed bound state in highly polarized Fermi gases

    Full text link
    We present an analytical treatment of a single \down atom within a Fermi sea of \up atoms, when the interaction is strong enough to produce a bound state, dressed by the Fermi sea. Our method makes use of a diagrammatic analysis, with the involved diagrams taking only into account at most two particle-hole pairs excitations. The agreement with existing Monte-Carlo results is excellent. In the BEC limit our equation reduces exactly to the Skorniakov and Ter-Martirosian equation. We present results when \up and \down atoms have different masses, which is of interest for experiments in progress.Comment: 5 pages, 3 figure

    On the nonlinear response of a particle interacting with fermions in a 1D lattice

    Full text link
    By the Bethe ansatz method we study the energy dispersion of a particle interacting by a local interaction with fermions (or hard core bosons) of equal mass in a one dimensional lattice. We focus on the period of the Bloch oscillations which turns out to be related to the Fermi wavevector of the Fermi sea and in particular on how this dispersion emerges as a collective effect in the thermodynamic limit. We show by symmetry that the dispersion is temperature independent for a half-filled system. We also discuss the adiabatic coherent collective response of the particle to an applied field.Comment: 4 pages, 4 figure

    Direct probing of band-structure Berry phase in diluted magnetic semiconductors

    Get PDF
    We report on experimental evidence of the Berry phase accumulated by the charge carrier wave function in single-domain nanowires made from a (Ga,Mn)(As,P) diluted ferromagnetic semiconductor layer. Its signature on the mesoscopic transport measurements is revealed as unusual patterns in the magnetoconductance, that are clearly distinguished from the universal conductance fluctuations. We show that these patterns appear in a magnetic field region where the magnetization rotates coherently and are related to a change in the band-structure Berry phase as the magnetization direction changes. They should be thus considered as a band structure Berry phase fingerprint of the effective magnetic monopoles in the momentum space. We argue that this is an efficient method to vary the band structure in a controlled way and to probe it directly. Hence, (Ga,Mn)As appears to be a very interesting test bench for new concepts based on this geometrical phase.Comment: 7 pages, 6 figure

    Ferromagnetic (Ga,Mn)N epilayers versus antiferromagnetic GaMn3_3N clusters

    Full text link
    Mn-doped wurtzite GaN epilayers have been grown by nitrogen plasma-assisted molecular beam epitaxy. Correlated SIMS, structural and magnetic measurements show that the incorporation of Mn strongly depends on the conditions of the growth. Hysteresis loops which persist at high temperature do not appear to be correlated to the presence of Mn. Samples with up to 2% Mn are purely substitutional Ga1x_{1-x}Mnx_xN epilayers, and exhibit paramagnetic properties. At higher Mn contents, precipitates are formed which are identified as GaMn3_3N clusters by x-ray diffraction and absorption: this induces a decrease of the paramagnetic magnetisation. Samples co-doped with enough Mg exhibit a new feature: a ferromagnetic component is observed up to Tc175T_c\sim175 K, which cannot be related to superparamagnetism of unresolved magnetic precipitates.Comment: Revised versio

    Flexible GMRES with Deflated Restarting

    Full text link

    Heat energy balance in the convective atmospheric boundary layer at Xianghe (Beijing Area), China

    Get PDF

    Two-dimensional universal conductance fluctuations and the electron-phonon interaction of topological surface states in Bi2Te2Se nanoribbons

    Full text link
    The universal conductance fluctuations (UCFs), one of the most important manifestations of mesoscopic electronic interference, have not yet been demonstrated for the two-dimensional surface state of topological insulators (TIs). Even if one delicately suppresses the bulk conductance by improving the quality of TI crystals, the fluctuation of the bulk conductance still keeps competitive and difficult to be separated from the desired UCFs of surface carriers. Here we report on the experimental evidence of the UCFs of the two-dimensional surface state in the bulk insulating Bi2Te2Se nanoribbons. The solely-B\perp-dependent UCF is achieved and its temperature dependence is investigated. The surface transport is further revealed by weak antilocalizations. Such survived UCFs of the topological surface states result from the limited dephasing length of the bulk carriers in ternary crystals. The electron-phonon interaction is addressed as a secondary source of the surface state dephasing based on the temperature-dependent scaling behavior

    Evidence for Intrinsic Redshifts in Normal Spiral Galaxies

    Full text link
    The Tully-Fisher Relationship (TFR) is utilized to identify anomalous redshifts in normal spiral galaxies. Three redshift anomalies are identified in this analysis: (1) Several clusters of galaxies are examined in which late type spirals have significant excess redshifts relative to early type spirals in the same clusters, (2) Galaxies of morphology similar to ScI galaxies are found to have a systematic excess redshift relative to the redshifts expected if the Hubble Constant is 72 km s-1 Mpc-1, (3) individual galaxies, pairs, and groups are identified which strongly deviate from the predictions of a smooth Hubble flow. These redshift deviations are significantly larger than can be explained by peculiar motions and TFR errors. It is concluded that the redshift anomalies identified in this analysis are consistent with previous claims for large non-cosmological (intrinsic) redshifts.Comment: Accepted for publication at Astrophysics&Space Science. 36 pages including 8 tables and 7 figure
    corecore