89,655 research outputs found
Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme
The controlled outflows from a reservoir or dam are highly dependent on the decisions made by the reservoir operators, instead of a natural hydrological process. Difference exists between the natural upstream inflows to reservoirs and the controlled outflows from reservoirs that supply the downstream users. With the decision maker's awareness of changing climate, reservoir management requires adaptable means to incorporate more information into decision making, such as water delivery requirement, environmental constraints, dry/wet conditions, etc. In this paper, a robust reservoir outflow simulation model is presented, which incorporates one of the well-developed data-mining models (Classification and Regression Tree) to predict the complicated human-controlled reservoir outflows and extract the reservoir operation patterns. A shuffled cross-validation approach is further implemented to improve CART's predictive performance. An application study of nine major reservoirs in California is carried out. Results produced by the enhanced CART, original CART, and random forest are compared with observation. The statistical measurements show that the enhanced CART and random forest overperform the CART control run in general, and the enhanced CART algorithm gives a better predictive performance over random forest in simulating the peak flows. The results also show that the proposed model is able to consistently and reasonably predict the expert release decisions. Experiments indicate that the release operation in the Oroville Lake is significantly dominated by SWP allocation amount and reservoirs with low elevation are more sensitive to inflow amount than others
Recommended from our members
Impacts of model calibration on high-latitude land-surface processes: PILPS 2(e) calibration/validation experiments
In the PILPS 2(e) experiment, the Snow Atmosphere Soil Transfer (SAST) land-surface scheme developed from the Biosphere-Atmosphere Transfer Scheme (BATS) showed difficulty in accurately simulating the patterns and quantities of runoff resulting from heavy snowmelt in the high-latitude Torne-Kalix River basin (shared by Sweden and Finland). This difficulty exposes the model deficiency in runoff formations. After representing subsurface runoff and calibrating the parameters, the accuracy of hydrograph prediction improved substantially. However, even with the accurate precipitation and runoff, the predicted soil moisture and its variation were highly "model-dependent". Knowledge obtained from the experiment is discussed. © 2003 Elsevier Science B.V. All rights reserved
Recommended from our members
Model performance of downscaling 1999-2004 hydrometeorological fields to the upper Rio Grande basin using different forcing datasets
This study downscaled more than five years of data (1999-2004) for hydrometeorological fields over the upper Rio Grande basin (URGB) to a 4-km resolution using a regional model [fifth-generation Pennsylvania State University-National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5, version 3)] and two forcing datasets that include National Centers for Environmental Prediction (NCEP)-NCAR reanalysis-1 (R1) and North America Regional Reanalysis (NARR) data. The long-term high-resolution simulation results show detailed patterns of hydroclimatological fields that are highly related to the characteristics of the regional terrain; the most important of these patterns are precipitation localization features caused by the complex topography. In comparison with station observational data, the downscaling processing, on whichever forcing field is used, generated more accurate surface temperature and humidity fields than the Eta Model and NARR data, although it still included marked errors, such as a negative (positive) bias toward the daily maximum (minimum) temperature and overestimated precipitation, especially in the cold season. Comparing the downscaling results forced by the NARR and R1 with both the gridded and station observational data shows that under the NARR forcing, the MM5 model produced generally better results for precipitation, temperature, and humidity than it did under the R1 forcing. These improvements were more apparent in winter and spring. During the warm season, although the use of NARR improved the precipitation estimates statistically at the regional (basin) scale, it substantially underestimated them over the southern upper Rio Grande basin, partly because the NARR forcing data exhibited warm and dry biases in the monsoon-active region during the simulation period and improper domain selection. Analyses also indicate that over mountainous regions, both the Climate Prediction Center's (CPC's) gridded (0.25°) and NARR forcings underestimate precipitation in comparison with station gauge data. © 2008 American Meteorological Society
Handling boundary constraints for particle swarm optimization in high-dimensional search space
Despite the fact that the popular particle swarm optimizer (PSO) is currently being extensively applied to many real-world problems that often have high-dimensional and complex fitness landscapes, the effects of boundary constraints on PSO have not attracted adequate attention in the literature. However, in accordance with the theoretical analysis in [11], our numerical experiments show that particles tend to fly outside of the boundary in the first few iterations at a very high probability in high-dimensional search spaces. Consequently, the method used to handle boundary violations is critical to the performance of PSO. In this study, we reveal that the widely used random and absorbing bound-handling schemes may paralyze PSO for high-dimensional and complex problems. We also explore in detail the distinct mechanisms responsible for the failures of these two bound-handling schemes. Finally, we suggest that using high-dimensional and complex benchmark functions, such as the composition functions in [19], is a prerequisite to identifying the potential problems in applying PSO to many real-world applications because certain properties of standard benchmark functions make problems inexplicit. © 2011 Elsevier Inc. All rights reserved
Acoustic detection of air shower cores
At an altitude of 1890m, a pre-test with an Air shower (AS) core selector and a small acoustic array set up in an anechoic pool with a volume of 20x7x7 cu m was performed, beginning in Aug. 1984. In analyzing the waveforms recorded during the effective working time of 186 hrs, three acoustic signals which cannot be explained as from any source other than AS cores were obtained, and an estimation of related parameters was made
Recommended from our members
Multimodel combination techniques for analysis of hydrological simulations: Application to distributed model intercomparison project results
This paper examines several multimodel combination techniques that are used for streamflow forecasting: the simple model average (SMA), the multimodel superensemble (MMSE), modified multimodel superensemble (M3SE), and the weighted average method (WAM). These model combination techniques were evaluated using the results from the Distributed Model Intercomparison Project (DMIP), an international project sponsored by the National Weather Service (NWS) Office of Hydrologic Development (OHD). All of the multimodel combination results were obtained using uncalibrated DMIP model simulations and were compared against the best-uncalibrated as well as the best-calibrated individual model results. The purpose of this study is to understand how different combination techniques affect the accuracy levels of the multimodel simulations. This study revealed that the multimodel simulations obtained from uncalibrated single-model simulations are generally better than any single-member model simulations, even the best-calibrated single-model simulations. Furthermore, more sophisticated multimodel combination techniques that incorporated bias correction step work better than simple multimodel average simulations or multimodel simulations without bias correction. © 2006 American Meteorological Society
- …
