4,397 research outputs found

    Quantum Hall effect and Landau level crossing of Dirac fermions in trilayer graphene

    Get PDF
    We investigate electronic transport in high mobility (\textgreater 100,000 cm2^2/Vβ‹…\cdots) trilayer graphene devices on hexagonal boron nitride, which enables the observation of Shubnikov-de Haas oscillations and an unconventional quantum Hall effect. The massless and massive characters of the TLG subbands lead to a set of Landau level crossings, whose magnetic field and filling factor coordinates enable the direct determination of the Slonczewski-Weiss-McClure (SWMcC) parameters used to describe the peculiar electronic structure of trilayer graphene. Moreover, at high magnetic fields, the degenerate crossing points split into manifolds indicating the existence of broken-symmetry quantum Hall states.Comment: Supplementary Information at http://jarilloherrero.mit.edu/wp-content/uploads/2011/04/Supplementary_Taychatanapat.pd

    Topological Photonics

    Get PDF
    Topology is revolutionizing photonics, bringing with it new theoretical discoveries and a wealth of potential applications. This field was inspired by the discovery of topological insulators, in which interfacial electrons transport without dissipation even in the presence of impurities. Similarly, new optical mirrors of different wave-vector space topologies have been constructed to support new states of light propagating at their interfaces. These novel waveguides allow light to flow around large imperfections without back-reflection. The present review explains the underlying principles and highlights the major findings in photonic crystals, coupled resonators, metamaterials and quasicrystals.Comment: progress and review of an emerging field, 12 pages, 6 figures and 1 tabl

    An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis

    Get PDF
    Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary information). Revised after critical reviews. Accepted for Publication in PLoS ON

    A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer

    Get PDF
    Previous studies have demonstrated focal but limited molecular similarities between circulating tumor cells (CTCs) and biopsies using isolated genetic assays. We hypothesized that molecular similarity between CTCs and tissue exists at the single cell level when characterized by whole genome sequencing (WGS). By combining the NanoVelcro CTC Chip with laser capture microdissection (LCM), we developed a platform for single-CTC WGS. We performed this procedure on CTCs and tissue samples from a patient with advanced prostate cancer who had serial biopsies over the course of his clinical history. We achieved 30X depth and β‰₯ 95% coverage. Twenty-nine percent of the somatic single nucleotide variations (SSNVs) identified were founder mutations that were also identified in CTCs. In addition, 86% of the clonal mutations identified in CTCs could be traced back to either the primary or metastatic tumors. In this patient, we identified structural variations (SVs) including an intrachromosomal rearrangement in chr3 and an interchromosomal rearrangement between chr13 and chr15. These rearrangements were shared between tumor tissues and CTCs. At the same time, highly heterogeneous short structural variants were discovered in PTEN, RB1, and BRCA2 in all tumor and CTC samples. Using high-quality WGS on single-CTCs, we identified the shared genomic alterations between CTCs and tumor tissues. This approach yielded insight into the heterogeneity of the mutational landscape of SSNVs and SVs. It may be possible to use this approach to study heterogeneity and characterize the biological evolution of a cancer during the course of its natural history

    Calcium-Dependent Increases in Protein Kinase-A Activity in Mouse Retinal Ganglion Cells Are Mediated by Multiple Adenylate Cyclases

    Get PDF
    Neurons undergo long term, activity dependent changes that are mediated by activation of second messenger cascades. In particular, calcium-dependent activation of the cyclic-AMP/Protein kinase A signaling cascade has been implicated in several developmental processes including cell survival, axonal outgrowth, and axonal refinement. The biochemical link between calcium influx and the activation of the cAMP/PKA pathway is primarily mediated through adenylate cyclases. Here, dual imaging of intracellular calcium concentration and PKA activity was used to assay the role of different classes of calcium-dependent adenylate cyclases (ACs) in the activation of the cAMP/PKA pathway in retinal ganglion cells (RGCs). Surprisingly, depolarization-induced calcium-dependent PKA transients persist in barrelless mice lacking AC1, the predominant calcium-dependent adenylate cyclase in RGCs, as well as in double knockout mice lacking both AC1 and AC8. Furthermore, in a subset of RGCs, depolarization-induced PKA transients persist during the inhibition of all transmembrane adenylate cyclases. These results are consistent with the existence of a soluble adenylate cyclase that plays a role in calcium-dependent activation of the cAMP/PKA cascade in neurons

    Quantifying predictors for the spatial diffusion of avian influenza virus in China

    Get PDF
    BACKGROUND: Avian influenza virus (AIV) causes both severe outbreaks and endemic disease among poultry and has caused sporadic human infections in Asia, furthermore the routes of transmission in avian species between geographic regions can be numerous and complex. Using nucleotide sequences from the internal protein coding segments of AIV, we performed a Bayesian phylogeographic study to uncover regional routes of transmission and factors predictive of the rate of viral diffusion within China. RESULTS: We found that the Central area and Pan-Pearl River Delta were the two main sources of AIV diffusion, while the East Coast areas especially the Yangtze River delta, were the major targets of viral invasion. Next we investigated the extent to which economic, agricultural, environmental and climatic regional data was predictive of viral diffusion by fitting phylogeographic discrete trait models using generalised linear models. CONCLUSIONS: Our results highlighted that the economic-agricultural predictors, especially the poultry population density and the number of farm product markets, are the key determinants of spatial diffusion of AIV in China; high human density and freight transportation are also important predictors of high rates of viral transmission; Climate features (e.g. temperature) were correlated to the viral invasion in the destination to some degree; while little or no impacts were found from natural environment factors (such as surface water coverage). This study uncovers the risk factors and enhances our understanding of the spatial dynamics of AIV in bird populations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-016-0845-3) contains supplementary material, which is available to authorized users

    Suppression of Methylation-Mediated Transcriptional Gene Silencing by Ξ²C1-SAHH Protein Interaction during Geminivirus-Betasatellite Infection

    Get PDF
    DNA methylation is a fundamental epigenetic modification that regulates gene expression and represses endogenous transposons and invading DNA viruses. As a counter-defense, the geminiviruses encode proteins that inhibit methylation and transcriptional gene silencing (TGS). Some geminiviruses have acquired a betasatellite called DNA Ξ². This study presents evidence that suppression of methylation-mediated TGS by the sole betasatellite-encoded protein, Ξ²C1, is crucial to the association of Tomato yellow leaf curl China virus (TYLCCNV) with its betasatellite (TYLCCNB). We show that TYLCCNB complements Beet curly top virus (BCTV) L2- mutants deficient for methylation inhibition and TGS suppression, and that cytosine methylation levels in BCTV and TYLCCNV genomes, as well as the host genome, are substantially reduced by TYLCCNB or Ξ²C1 expression. We also demonstrate that while TYLCCNB or Ξ²C1 expression can reverse TGS, TYLCCNV by itself is ineffective. Thus its AC2/AL2 protein, known to have suppression activity in other geminiviruses, is likely a natural mutant in this respect. A yeast two-hybrid screen of candidate proteins, followed by bimolecular fluorescence complementation analysis, revealed that Ξ²C1 interacts with S-adenosyl homocysteine hydrolase (SAHH), a methyl cycle enzyme required for TGS. We further demonstrate that Ξ²C1 protein inhibits SAHH activity in vitro. That Ξ²C1 and other geminivirus proteins target the methyl cycle suggests that limiting its product, S-adenosyl methionine, may be a common viral strategy for methylation interference. We propose that inhibition of methylation and TGS by Ξ²C1 stabilizes geminivirus/betasatellite complexes

    Identification and Characterization of Mechanism of Action of P61-E7, a Novel Phosphine Catalysis-Based Inhibitor of Geranylgeranyltransferase-I

    Get PDF
    Small molecule inhibitors of protein geranylgeranyltransferase-I (GGTase-I) provide a promising type of anticancer drugs. Here, we first report the identification of a novel tetrahydropyridine scaffold compound, P61-E7, and define effects of this compound on pancreatic cancer cells. P61-E7 was identified from a library of allenoate-derived compounds made through phosphine-catalyzed annulation reactions. P61-E7 inhibits protein geranylgeranylation and blocks membrane association of geranylgeranylated proteins. P61-E7 is effective at inhibiting both cell proliferation and cell cycle progression, and it induces high p21CIP1/WAF1 level in human cancer cells. P61-E7 also increases p27Kip1 protein level and inhibits phosphorylation of p27Kip1 on Thr187. We also report that P61-E7 treatment of Panc-1 cells causes cell rounding, disrupts actin cytoskeleton organization, abolishes focal adhesion assembly and inhibits anchorage independent growth. Because the cellular effects observed pointed to the involvement of RhoA, a geranylgeranylated small GTPase protein shown to influence a number of cellular processes including actin stress fiber organization, cell adhesion and cell proliferation, we have evaluated the significance of the inhibition of RhoA geranylgeranylation on the cellular effects of inhibitors of GGTase-I (GGTIs). Stable expression of farnesylated RhoA mutant (RhoA-F) results in partial resistance to the anti-proliferative effect of P61-E7 and prevents induction of p21CIP1/WAF1 and p27Kip1 by P61-E7 in Panc-1 cells. Moreover, stable expression of RhoA-F rescues Panc-1 cells from cell rounding and inhibition of focal adhesion formation caused by P61-E7. Taken together, these findings suggest that P61-E7 is a promising GGTI compound and that RhoA is an important target of P61-E7 in Panc-1 pancreatic cancer cells

    WNT signalling in prostate cancer

    Get PDF
    Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-Ξ²-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of Ξ²-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer

    Caenorhabditis elegans Battling Starvation Stress: Low Levels of Ethanol Prolong Lifespan in L1 Larvae

    Get PDF
    The nematode Caenorhabditis elegans arrests development at the first larval stage if food is not present upon hatching. Larvae in this stage provide an excellent model for studying stress responses during development. We found that supplementing starved larvae with ethanol markedly extends their lifespan within this L1 diapause. The effects of ethanol-induced lifespan extension can be observed when the ethanol is added to the medium at any time between 0 and 10 days after hatching. The lowest ethanol concentration that extended lifespan was 1 mM (0.005%); higher concentrations to 68 mM (0.4%) did not result in increased survival. In spite of their extended survival, larvae did not progress to the L2 stage. Supplementing starved cultures with n-propanol and n-butanol also extended lifespan, but methanol and isopropanol had no measurable effect. Mass spectrometry analysis of nematode fatty acids and amino acids revealed that L1 larvae can incorporate atoms from ethanol into both types of molecules. Based on these data, we suggest that ethanol supplementation may extend the lifespan of L1 larvae by either serving as a carbon and energy source and/or by inducing a stress response
    • …
    corecore