18,915 research outputs found

    A unified approach to blending of constant and varying parametric surfaces with curvature continuity

    Get PDF
    In this paper, we develop a new approach to blending of constant and varying parametric surfaces with curvature continuity. We propose a new mathematical model consisting of a vector-valued sixth-order partial differential equation (PDE) and time-dependent blending boundary constraints, and develop an approximate analytical solution of the mathematical model. The good accuracy and high computational efficiency are demonstrated by comparing the new approximate analytical solution with the corresponding accurate closed form solution. We also investigate the influence of the second partial derivatives on the continuity at trimlines, and apply the new approximate analytical solution in blending of constant and varying parametric surfaces with curvature continuit

    Decomposition characteristics of maize (Zea mays. L.) straw with different carbon to nitrogen (C/N) ratios under various moisture regimes

    Get PDF
    Decomposition of maize straw incorporated into soil with various nitrogen amended carbon to nitrogen (C/N) ratios under a range of moisture was studied through a laboratory incubation trial. The experiment was set up to simulate the most suitable C/N ratio for straw carbon (C) decomposition and sequestering in the soil. The purpose of this study was to determine organic C decomposition by measuring CO2 evolution using alkali traps. Maize straw mixed with clay loam topsoil was supplied with four initial nitrogen rates (40, 80, 160, 320 mg N/0.5 g C) using (NH4)2SO4, to adjust its C/N ratio to 80, 40, 18 and 9. The soil moisture content was maintained at four moisture levels to achieve 60, 70, 80 and 90% of field capacity. Each of the four nitrogen rates were tested against four moisture levels, arranged in complete randomized design and incubated at 20Ā°C for 52 days. Results reveal that decomposition rates and cumulative CO2-C was increased by about 40% in straw amended treatments as compared to the controls. On average, about 34.56% of the added straw C was mineralized to CO2-C. Also, there was highly significant relationship between CO2-C emission and incubation period (R2 = 0.98). Further, straw addition with interactive effect of nitrogen and moisture had significant relationships (p < 0.05) with cumulative amounts of CO2-C, soil organic C and microbial biomass nitrogen. In conclusion, straw returning with appropriate N doses and optimum moisture can sequester and restore organic C in soil, thereby improving soil quality.Key words: CO2 evolution, C/N ratio, microbial biomass, moisture, straw decomposition

    Different patterns of transcriptomic response to high temperature between diploid and tetraploid Dioscorea zingiberensis C. H.

    Get PDF
    Polyploidy is an important evolutionary force in plants and may have significant impact on plant breeding. In this study, expression changes between diploid and tetraploid Dioscorea zingiberensis C. H. under control and high temperature conditions were investigated by sequence-related amplified polymorphism (SRAP)-cDNA display approach. Up to 2.7% of the expression changes induced by genome doubling were detected in the tetraploid D. zingiberensis relative to its diploid progenitor. Under high temperature stress, a ā€œrandom transcriptome responseā€ pattern employed with 6.3% of the expression changes were detected in diploid plants, while, an ā€œactivation transcriptome responseā€ pattern developed with 6.9% expression changes were detected in tetraploid plants. This result indicated that there might be ploidy dependent pattern of transcriptomic response to high temperature environment, which might contribute to the evolutionary success of polyploids.Key words: Dioscorea zingiberensis C. H., high temperature, polyploidy, sequence-related amplified polymorphism -cDNA

    Reversible Embedding to Covers Full of Boundaries

    Full text link
    In reversible data embedding, to avoid overflow and underflow problem, before data embedding, boundary pixels are recorded as side information, which may be losslessly compressed. The existing algorithms often assume that a natural image has little boundary pixels so that the size of side information is small. Accordingly, a relatively high pure payload could be achieved. However, there actually may exist a lot of boundary pixels in a natural image, implying that, the size of side information could be very large. Therefore, when to directly use the existing algorithms, the pure embedding capacity may be not sufficient. In order to address this problem, in this paper, we present a new and efficient framework to reversible data embedding in images that have lots of boundary pixels. The core idea is to losslessly preprocess boundary pixels so that it can significantly reduce the side information. Experimental results have shown the superiority and applicability of our work
    • ā€¦
    corecore