2,210 research outputs found

    Perturbational approach to the quantum capacity of additive Gaussian quantum channel

    Full text link
    For a quantum channel with additive Gaussian quantum noise, at the large input energy side, we prove that the one shot capacity is achieved by the thermal noise state for all Gaussian state inputs, it is also true for non-Gaussian input in the sense of first order perturbation. For a general case of nn copies input, we show that up to first order perturbation, any non-Gaussian perturbation to the product thermal state input has a less quantum information transmission rate when the input energy tend to infinitive.Comment: 5 page

    Prediction of extreme events in the OFC model on a small world network

    Full text link
    We investigate the predictability of extreme events in a dissipative Olami-Feder-Christensen model on a small world topology. Due to the mechanism of self-organized criticality, it is impossible to predict the magnitude of the next event knowing previous ones, if the system has an infinite size. However, by exploiting the finite size effects, we show that probabilistic predictions of the occurrence of extreme events in the next time step are possible in a finite system. In particular, the finiteness of the system unavoidably leads to repulsive temporal correlations of extreme events. The predictability of those is higher for larger magnitudes and for larger complex network sizes. Finally, we show that our prediction analysis is also robust by remarkably reducing the accessible number of events used to construct the optimal predictor.Comment: 5 pages, 4 figure

    System thermal-hydraulic modelling of the phénix dissymmetric test benchmark

    Get PDF
    Phénix is a French pool-type sodium-cooled prototype reactor; before the definitive shutdown, occurred in 2009, a final set of experimental tests are carried out in order to increase the knowledge on the operation and the safety aspect of the pool-type liquid metal-cooled reactors. One of the experiments was the Dissymmetric End-of-Life Test which was selected for the validation benchmark activity in the frame of SESAME project. The computer code validation plays a key role in the safety assessment of the innovative nuclear reactors and the Phénix dissymmetric test provides useful experimental data to verify the computer codes capability in the asymmetric thermal-hydraulic behaviour into a pool-type liquid metal-cooled reactor. This paper shows the comparison of the outcomes obtained with six different System Thermal-Hydraulic (STH) codes: RELAP5-3D©, SPECTRA, ATHLET, SAS4A/SASSYS-1, ASTEC-Na and CATHARE. The nodalization scheme of the reactor was individually achieved by the participants; during the development of the thermal-hydraulic model, the pool nodalization methodology had a special attention in order to investigate the capability of the STH codes to reproduce the dissymmetric effects which occur in each loop and into pools, caused by the azimuthal asymmetry of the boundary conditions. The modelling methodology of the participants is discussed and the main results are compared in this paper to obtain useful guide lines for the future modelling of innovative liquid metal pool-type reactors

    Superconductor to resistive state switching by multiple fluctuation events in NbTiN nanostrips

    Get PDF
    We report on measurements of the switching current distributions on two-dimensional superconducting NbTiN strips that are 5 nm thick and 80 nm wide. We observe that the width of the switching current distributions has a non-monotonous temperature dependence, where it is constant at the lowest temperatures up to about 1.5 K, after which it increases with temperature until 2.2 K. Above 2.5 K any increase in temperature decreases the distribution width which at 4.0 K is smaller than half the width observed at 0.3 K. By using a careful analysis of the higher order moments of the switching distribution, we show that this temperature dependence is caused by switching due to multiple fluctuations. We also find that the onset of switching by multiple events causes the current dependence of the switching rate to develop a characteristic deviation from a pure exponential increase, that becomes more pronounced at higher temperatures, due to the inclusion of higher order terms

    Casimir force on a piston

    Full text link
    We consider a massless scalar field obeying Dirichlet boundary conditions on the walls of a two-dimensional L x b rectangular box, divided by a movable partition (piston) into two compartments of dimensions a x b and (L-a) x b. We compute the Casimir force on the piston in the limit L -> infinity. Regardless of the value of a/b, the piston is attracted to the nearest end of the box. Asymptotic expressions for the Casimir force on the piston are derived for a << b and a >> b.Comment: 10 pages, 1 figure. Final version, accepted for publication in Phys. Rev.

    Quantum view of Li-ion high mobility at carbon-coated cathode interfaces

    Get PDF
    : Lithium-ion batteries (LIBs) are among the most promising power sources for electric vehicles, portable electronics and smart grids. In LIBs, the cathode is a major bottleneck, with a particular reference to its low electrical conductivity and Li-ion diffusivity. The coating with carbon layers is generally employed to enhance the electrical conductivity and to protect the active material from degradation during operation. Here, we demonstrate that this layer has a primary role in the lithium diffusivity into the cathode nanoparticles. Positron is a useful quantum probe at the electroactive materials/carbon interface to sense the mobility of Li-ion. Broadband electrical spectroscopy demonstrates that only a small number of Li-ions are moving, and that their diffusion strongly depends on the type of carbon additive. Positron annihilation and broadband electrical spectroscopies are crucial complementary tools to investigate the electronic effect of the carbon phase on the cathode performance and Li-ion dynamics in electroactive materials

    Distribution of entanglement in light-harvesting complexes and their quantum efficiency

    Full text link
    Recent evidence of electronic coherence during energy transfer in photosynthetic antenna complexes has reinvigorated the discussion of whether coherence and/or entanglement has any practical functionality for these molecular systems. Here we investigate quantitative relationships between the quantum yield of a light-harvesting complex and the distribution of entanglement among its components. Our study focusses on the entanglement yield or average entanglement surviving a time scale comparable to the average excitation trapping time. As a prototype system we consider the Fenna-Matthews-Olson (FMO) protein of green sulphur bacteria and show that there is an inverse relationship between the quantum efficiency and the average entanglement between distant donor sites. Our results suggest that longlasting electronic coherence among distant donors might help modulation of the lightharvesting function.Comment: Version accepted for publication in NJ

    Dephasing-induced diffusive transport in anisotropic Heisenberg model

    Full text link
    We study transport properties of anisotropic Heisenberg model in a disordered magnetic field experiencing dephasing due to external degrees of freedom. In the absence of dephasing the model can display, depending on parameter values, the whole range of possible transport regimes: ideal ballistic conduction, diffusive, or ideal insulating behavior. We show that the presence of dephasing induces normal diffusive transport in a wide range of parameters. We also analyze the dependence of spin conductivity on the dephasing strength. In addition, by analyzing the decay of spin-spin correlation function we discover a presence of long-range order for finite chain sizes. All our results for a one-dimensional spin chain at infinite temperature can be equivalently rephrased for strongly-interacting disordered spinless fermions.Comment: 15 pages, 9 PS figure

    Multiple Scale Reorganization of Electrostatic Complexes of PolyStyrene Sulfonate and Lysozyme

    Get PDF
    We report on a SANS investigation into the potential for these structural reorganization of complexes composed of lysozyme and small PSS chains of opposite charge if the physicochemical conditions of the solutions are changed after their formation. Mixtures of solutions of lysozyme and PSS with high matter content and with an introduced charge ratio [-]/[+]intro close to the electrostatic stoichiometry, lead to suspensions that are macroscopically stable. They are composed at local scale of dense globular primary complexes of radius ~ 100 {\AA}; at a higher scale they are organized fractally with a dimension 2.1. We first show that the dilution of the solution of complexes, all other physicochemical parameters remaining constant, induces a macroscopic destabilization of the solutions but does not modify the structure of the complexes at submicronic scales. This suggests that the colloidal stability of the complexes can be explained by the interlocking of the fractal aggregates in a network at high concentration: dilution does not break the local aggregate structure but it does destroy the network. We show, secondly, that the addition of salt does not change the almost frozen inner structure of the cores of the primary complexes, although it does encourage growth of the complexes; these coalesce into larger complexes as salt has partially screened the electrostatic repulsions between two primary complexes. These larger primary complexes remain aggregated with a fractal dimension of 2.1. Thirdly, we show that the addition of PSS chains up to [-]/[+]intro ~ 20, after the formation of the primary complex with a [-]/[+]intro close to 1, only slightly changes the inner structure of the primary complexes. Moreover, in contrast to the synthesis achieved in the one-step mixing procedure where the proteins are unfolded for a range of [-]/[+]intro, the native conformation of the proteins is preserved inside the frozen core
    • …
    corecore