145,167 research outputs found
The Future of Coal in China
As the worldâs largest consumer of total primary energy and energy from coal, and the largest emitter of carbon dioxide (CO2), China is now taking an active role in controlling CO2 emissions. Given current coal use in China, and the urgent need to cut emissions, âclean coalâ technologies are regarded as a promising solution for China to meet its carbon reduction targets while still obtaining a considerable share of energy from coal. Using an economy-wide model, this paper evaluates the impact of two existing advanced coal technologiesâcoal upgrading and ultra-supercritical (USC) coal power generationâon economic, energy and emissions outcomes when a carbon price is used to meet Chinaâs CO2 intensity target out to 2035. Additional deployment of USC coal power generation lowers the carbon price required to meet the CO2 intensity target by more than 40% in the near term and by 25% in the longer term. It also increases total coal power generation and coal use. Increasing the share of coal that is upgraded leads to only a small decrease in the carbon price. As Chinaâs CO2 intensity is set exogenously, additional deployment of the two technologies has a small impact on total CO2 emissions.The authors thank John Reilly for helpful comments and suggestions, and gratefully acknowledge the financial support for this work provided by the MIT Joint Program on the Science and Policy of Global Change through a consortium of industrial sponsors and Federal grants. For a complete list of sponsors see http://globalchange.mit.edu/sponsors
Comprehensive Characterization of the Transmitted/Founder env Genes From a Single MSM Cohort in China
Background: The men having sex with men (MSM) population has become one of the major risk groups for HIV-1 infection in China. However, the epidemiological patterns, function of the env genes, and autologous and heterologous neutralization activity in the same MSM population have not been systematically characterized. Methods: The env gene sequences were obtained by the single genome amplification. The time to the most recent common ancestor was estimated for each genotype using the Bayesian Markov Chain Monte Carlo approach. Coreceptor usage was determined in NP-2 cells. Neutralization was analyzed using Env pseudoviruses in TZM-bl cells. Results: We have obtained 547 full-length env gene sequences by single genome amplification from 30 acute/early HIV-1âinfected individuals in the Beijing MSM cohort. Three genotypes (subtype B, CRF01_AE, and CRF07_BC) were identified and 20% of the individuals were infected with multiple transmitted/founder (T/F) viruses. The tight clusters of the MSM sequences regardless of geographic origins indicated nearly exclusive transmission within the MSM population and limited number of introductions. The time to the most recent common ancestor for each genotype was 10â15 years after each was first introduced in China. Disparate preferences for coreceptor usages among 3 genotypes might lead to the changes in percentage of different genotypes in the MSM population over time. The genotype-matched and genotype-mismatched neutralization activity varied among the 3 genotypes. Conclusions: The identification of unique characteristics for transmission, coreceptor usage, neutralization profile, and epidemic patterns of HIV-1 is critical for the better understanding of transmission mechanisms, development of preventive strategies, and evaluation of vaccine efficacy in the MSM population in China
China's energy consumption in the building sector: A Statistical Yearbook-Energy Balance Sheet based splitting method
China's energy consumption in the building sector (BEC) is not counted as a separate type of energy consumption, but divided and mixed in other sectors in China's statistical system. This led to the lack of historical data on China's BEC. Moreover, previous researches' shortages such as unsystematic research on BEC, various estimation methods with complex calculation process, and difficulties in data acquisition resulted in âheterogeneousâ of current BEC in China. Aiming to these deficiencies, this study proposes a set of China building energy consumption calculation method (CBECM) by splitting out the building related energy consumption mixed in other sectors in the composition of China Statistical Yearbook-Energy Balance Sheet. Then, China's BEC from 2000 to 2014 are estimated using CBECM and compared with other studies. Results show that, from 2000 to 2014, China's BEC increased 1.7 times, rising from 301 to 814 million tons of standard coal consumed, with the BEC percentage of total energy consumption stayed relatively stable between 17.7% and 20.3%. By comparison, we find that our results are reliable and the CBECM has the following advantages over other methods: data source is authoritative, calculation process is concise, and it is easy to obtain time series data on BEC etc. The CBECM is particularly suitable for the provincial government to calculate the local BEC, even in the circumstance with statistical yearbook available only
Total coloring of 1-toroidal graphs of maximum degree at least 11 and no adjacent triangles
A {\em total coloring} of a graph is an assignment of colors to the
vertices and the edges of such that every pair of adjacent/incident
elements receive distinct colors. The {\em total chromatic number} of a graph
, denoted by \chiup''(G), is the minimum number of colors in a total
coloring of . The well-known Total Coloring Conjecture (TCC) says that every
graph with maximum degree admits a total coloring with at most colors. A graph is {\em -toroidal} if it can be drawn in torus such
that every edge crosses at most one other edge. In this paper, we investigate
the total coloring of -toroidal graphs, and prove that the TCC holds for the
-toroidal graphs with maximum degree at least~ and some restrictions on
the triangles. Consequently, if is a -toroidal graph with maximum degree
at least~ and without adjacent triangles, then admits a total
coloring with at most colors.Comment: 10 page
Recommended from our members
A hybrid stabilization technique for simulating water wave - Structure interaction by incompressible Smoothed Particle Hydrodynamics (ISPH) method
The Smoothed Particle Hydrodynamics (SPH) method is emerging as a potential tool for studying water wave related problems, especially for violent free surface flow and large deformation problems. The incompressible SPH (ISPH) computations have been found not to be able to maintain the stability in certain situations and there exist some spurious oscillations in the pressure time history, which is similar to the weakly compressible SPH (WCSPH). One main cause of this problem is related to the non-uniform and clustered distribution of the moving particles. In order to improve the model performance, the paper proposed an efficient hybrid numerical technique aiming to correct the ill particle distributions. The correction approach is realized through the combination of particle shifting and pressure gradient improvement. The advantages of the proposed hybrid technique in improving ISPH calculations are demonstrated through several applications that include solitary wave impact on a slope or overtopping a seawall, and regular wave slamming on the subface of open-piled structure
- âŠ