28,933 research outputs found
Calculating Biological Behaviors of Epigenetic States in Phage lambda Life Cycle
Gene regulatory network of lambda phage is one the best studied model systems
in molecular biology. More 50 years of experimental study has provided a
tremendous amount of data at all levels: physics, chemistry, DNA, protein, and
function. However, its stability and robustness for both wild type and mutants
has been a notorious theoretical/mathematical problem. In this paper we report
our successful calculation on the properties of this gene regulatory network.
We believe it is of its first kind. Our success is of course built upon
numerous previous theoretical attempts, but following 3 features make our
modeling uniqu:
1) A new modeling method particular suitable for stability and robustness
study;
2) Paying a close attention to the well-known difference of in vivo and in
vitro;
3) Allowing more important role for noise and stochastic effect to play.
The last two points have been discussed by two of us (Ao and Yin,
cond-mat/0307747), which we believe would be enough to make some of previous
theoretical attempts successful, too. We hope the present work would stimulate
a further interest in the emerging field of gene regulatory network.Comment: 16 pages, 3 figures, 1 tabl
Universal Tomonaga-Luttinger liquid phases in one-dimensional strongly attractive SU(N) fermionic cold atoms
A simple set of algebraic equations is derived for the exact low-temperature
thermodynamics of one-dimensional multi-component strongly attractive fermionic
atoms with enlarged SU(N) spin symmetry and Zeeman splitting. Universal
multi-component Tomonaga-Luttinger liquid (TLL) phases are thus determined. For
linear Zeeman splitting, the physics of the gapless phase at low temperatures
belongs to the universality class of a two-component asymmetric TLL
corresponding to spin-neutral N-atom composites and spin-(N-1)/2 single atoms.
The equation of states is also obtained to open up the study of multi-component
TLL phases in 1D systems of N-component Fermi gases with population imbalance.Comment: 12 pages, 3 figure
Universal local pair correlations of Lieb-Liniger bosons at quantum criticality
The one-dimensional Lieb-Liniger Bose gas is a prototypical many-body system
featuring universal Tomonaga-Luttinger liquid (TLL) physics and free fermion
quantum criticality. We analytically calculate finite temperature local pair
correlations for the strong coupling Bose gas at quantum criticality using the
polylog function in the framework of the Yang-Yang thermodynamic equations. We
show that the local pair correlation has the universal value in the quantum critical regime, the TLL phase and the
quasi-classical region, where is the pressure per unit length rescaled by
the interaction energy with interaction
strength and linear density . This suggests the possibility to test
finite temperature local pair correlations for the TLL in the relativistic
dispersion regime and to probe quantum criticality with the local correlations
beyond the TLL phase. Furthermore, thermodynamic properties at high
temperatures are obtained by both high temperature and virial expansion of the
Yang-Yang thermodynamic equation.Comment: 8 pages, 6 figures, additional text and reference
Exactly solvable models and ultracold Fermi gases
Exactly solvable models of ultracold Fermi gases are reviewed via their
thermodynamic Bethe Ansatz solution. Analytical and numerical results are
obtained for the thermodynamics and ground state properties of two- and
three-component one-dimensional attractive fermions with population imbalance.
New results for the universal finite temperature corrections are given for the
two-component model. For the three-component model, numerical solution of the
dressed energy equations confirm that the analytical expressions for the
critical fields and the resulting phase diagrams at zero temperature are highly
accurate in the strong coupling regime. The results provide a precise
description of the quantum phases and universal thermodynamics which are
applicable to experiments with cold fermionic atoms confined to one-dimensional
tubes.Comment: based on an invited talk at Statphys24, Cairns (Australia) 2010. 16
pages, 6 figure
Quantum correlations in a cluster-like system
We discuss a cluster-like 1D system with triplet interaction. We study the
topological properties of this system. We find that the degeneracy depends on
the topology of the system, and well protected against external local
perturbations. All these facts show that the system is topologically ordered.
We also find a string order parameter to characterize the quantum phase
transition. Besides, we investigate two-site correlations including
entanglement, quantum discord and mutual information. We study the different
divergency behaviour of the correlations. The quantum correlation decays
exponentially in both topological and magnetic phases, and diverges in reversed
power law at the critical point. And we find that in TQPT systems, the global
difference of topology induced by dimension can be reflected in local quantum
correlations.Comment: 7 pages, 6 figure
The correlations between the twin kHz QPO frequencies of LMXBs
We analyzed the recently published kHz QPO data in the neutron star low-mass
X-ray binaries (LMXBs), in order to investigate the different correlations of
the twin peak kilohertz quasi-eriodic oscillations (kHz QPOs) in bright Z
sources and in the less luminous Atoll sources. We find that a power-law
relation \no\sim\nt^{b} between the upper and the lower kHz QPOs with
different indices: 1.5 for the Atoll source 4U 1728-34 and
1.9 for the Z source Sco X-1. The implications of our results for
the theoretical models for kHz QPOs are discussed.Comment: 6 pages, accepted by MNRA
Wilson ratio of Fermi gases in one dimension
We calculate the Wilson ratio of the one-dimensional Fermi gas with spin
imbalance. The Wilson ratio of attractively interacting fermions is solely
determined by the density stiffness and sound velocity of pairs and of excess
fermions for the two-component Tomonaga-Luttinger liquid (TLL) phase. The ratio
exhibits anomalous enhancement at the two critical points due to the sudden
change in the density of states. Despite a breakdown of the quasiparticle
description in one dimension, two important features of the Fermi liquid are
retained, namely the specific heat is linearly proportional to temperature
whereas the susceptibility is independent of temperature. In contrast to the
phenomenological TLL parameter, the Wilson ratio provides a powerful parameter
for testing universal quantum liquids of interacting fermions in one, two and
three dimensions.Comment: 5+2 pages, 4+1 figures, Eq. (4) is proved, figures were refine
- âŠ