13,857 research outputs found

    Split Two-Higgs-Doublet Model and Neutrino Condensation

    Full text link
    We split the two-Higgs-doublet model by assuming very different vevs for the two doublets: the vev is at weak scale (174 GeV) for the doublet \Phi_1 and at neutrino-mass scale (10^{-2} \sim 10^{-3} eV) for the doublet \Phi_2. \Phi_1 is responsible for giving masses to all fermions except neutrinos; while \Phi_2 is responsible for giving neutrino masses through its tiny vev without introducing see-saw mechanism. Among the predicted five physical scalars H, h, A^0 and H^{\pm}, the CP-even scalar h is as light as 10^{-2} \sim 10^{-3}eV while others are at weak scale. We identify h as the cosmic dark energy field and the other CP-even scalar H as the Standard Model Higgs boson; while the CP-odd A^0 and the charged H^{\pm} are the exotic scalars to be discovered at future colliders. Also we demonstrate a possible dynamical origin for the doublet \Phi_2 from neutrino condensation caused by some unknown dynamics.Comment: version in Europhys. Lett. (discussions added

    VHE gamma ray absorption by galactic interstellar radiation field

    Full text link
    Adopting a recent calculation of the Galactic interstellar radiation field, we calculate the attenuation of the very high energy gamma rays from the Galactic sources. The infra-red radiation background near the Galactic Center is very intense due to the new calculation and our result shows that a cutoff of high energy gamma ray spectrum begins at about 20 TeV and reaches about 10% for 50 TeV gamma rays.Comment: 6 pages, 1 figure, figure is changed, conclusion not change

    Muon anomalous magnetic moment and lepton flavor violation in MSSM

    Full text link
    We give a thorough analysis of the correlation between the muon anomalous magnetic moment and the radiative lepton flavor violating (LFV) processes within the minimal supersymmetric standard model. We find that in the case when the slepton mass eigenstates are nearly degenerate, δaμ\delta a_\mu, coming from SUSY contributions, hardly depends on the lepton flavor mixing and, thus, there is no direct relation between δaμ\delta a_\mu and the LFV processes. On the contrary, if the first two generations' sleptons are much heavier than the 3rd one, i.e., in the effective SUSY scenario, the two quantities are closely related. In the latter scenario, the SUSY parameter space to account for the experimental δaμ\delta a_\mu is quite different from the case of no lepton flavor mixing. Especially, the Higgsino mass parameter μ\mu can be either positive or negative.Comment: 22 pages, 9 figures; Some discussions are modifie

    Infrared response of ordered polarons in layered perovskites

    Full text link
    We report on the infrared absorption spectra of three oxides where charged superlattices have been recently observed in diffraction experiments. In La1.67_{1.67}Sr0.33_{0.33}NiO4_4, polaron localization is found to suppress the low-energy conductivity through the opening of a gap and to split the E2uE_{2u}-A2uA_{2u} vibrational manifold of the oxygen octahedra. Similar effects are detected in Sr1.5_{1.5}La0.5_{0.5}MnO4_4 and in La2_2NiO4+y_{4+y}, with peculiar differences related to the type of charge ordering.Comment: File latex, 11 p. + 3 Figures, to appear on Phys. Rev. B (Rapid Commun.), 1 Oct. 1996. The figures will be faxed upon request. E-mail:[email protected] Fax: +39-6-446315

    Induced magnetization in La0.7_{0.7}Sr0.3_{0.3}MnO3_3/BiFeO3_3 superlattices

    Get PDF
    Using polarized neutron reflectometry (PNR), we observe an induced magnetization of 75±\pm 25 kA/m at 10 K in a La0.7_{0.7}Sr0.3_{0.3}MnO3_3 (LSMO)/BiFeO3_3 superlattice extending from the interface through several atomic layers of the BiFeO3_3 (BFO). The induced magnetization in BFO is explained by density functional theory, where the size of bandgap of BFO plays an important role. Considering a classical exchange field between the LSMO and BFO layers, we further show that magnetization is expected to extend throughout the BFO, which provides a theoretical explanation for the results of the neutron scattering experiment.Comment: 5 pages, 4 figures, with Supplemental Materials. To appear in Physical Review Letter

    CP Asymmetry in Charged Higgs Decays in MSSM

    Get PDF
    We discuss and compare the charge-parity (CP) asymmetry in the charged Higgs boson decays H -> \bar{u}_i d_j for the second and third generation quarks in the minimal supersymmetric standard model. As part of the analysis, we derive some general analytical formulas for the imaginary parts of two-point and three-point scalar one-loop integrals and use them for calculating vectorial and tensorial type integrals needed for the problem under consideration. We find that, even though each decay mode has a potential to yield a CP asymmetry larger than 10%, further analysis based on the number of required charged Higgs events at colliders favors the \bar{t}b, \bar{c}b, and \bar{c}s channels, whose asymmetry could reach 10-15% in certain parts of the parameter space.Comment: 25 pages, 9 figures. Discussion about charged Higgs observability added, typos corrected, accepted for publication in PR

    Ages and Masses of 0.64 million Red Giant Branch stars from the LAMOST Galactic Spectroscopic Survey

    Full text link
    We present a catalog of stellar age and mass estimates for a sample of 640\,986 red giant branch (RGB) stars of the Galactic disk from the LAMOST Galactic Spectroscopic Survey (DR4). The RGB stars are distinguished from the red clump stars utilizing period spacing derived from the spectra with a machine learning method based on kernel principal component analysis (KPCA). Cross-validation suggests our method is capable of distinguishing RC from RGB stars with only 2 per cent contamination rate for stars with signal-to-noise ratio (SNR) higher than 50. The age and mass of these RGB stars are determined from their LAMOST spectra with KPCA method by taking the LAMOST - KeplerKepler giant stars having asteroseismic parameters and the LAMOST-TGAS sub-giant stars based on isochrones as training sets. Examinations suggest that the age and mass estimates of our RGB sample stars with SNR >> 30 have a median error of 30 per cent and 10 per cent, respectively. Stellar ages are found to exhibit positive vertical and negative radial gradients across the disk, and the age structure of the disk is strongly flared across the whole disk of 6<R<136<R<13\,kpc. The data set demonstrates good correlations among stellar age, [Fe/H] and [α\alpha/Fe]. There are two separate sequences in the [Fe/H] -- [α\alpha/Fe] plane: a high--α\alpha sequence with stars older than \sim\,8\,Gyr and a low--α\alpha sequence composed of stars with ages covering the whole range of possible ages of stars. We also examine relations between age and kinematic parameters derived from the Gaia DR2 parallax and proper motions. Both the median value and dispersion of the orbital eccentricity are found to increase with age. The vertical angular momentum is found to fairly smoothly decrease with age from 2 to 12\,Gyr, with a rate of about -50\,kpc\,km\,s1^{-1}\,Gyr1^{-1}. A full table of the catalog is public available online.Comment: 16 pages, 22 figures,accepted by MNRA
    corecore