13,857 research outputs found
Split Two-Higgs-Doublet Model and Neutrino Condensation
We split the two-Higgs-doublet model by assuming very different vevs for the
two doublets: the vev is at weak scale (174 GeV) for the doublet \Phi_1 and at
neutrino-mass scale (10^{-2} \sim 10^{-3} eV) for the doublet \Phi_2. \Phi_1 is
responsible for giving masses to all fermions except neutrinos; while \Phi_2 is
responsible for giving neutrino masses through its tiny vev without introducing
see-saw mechanism. Among the predicted five physical scalars H, h, A^0 and
H^{\pm}, the CP-even scalar h is as light as 10^{-2} \sim 10^{-3}eV while
others are at weak scale. We identify h as the cosmic dark energy field and the
other CP-even scalar H as the Standard Model Higgs boson; while the CP-odd A^0
and the charged H^{\pm} are the exotic scalars to be discovered at future
colliders. Also we demonstrate a possible dynamical origin for the doublet
\Phi_2 from neutrino condensation caused by some unknown dynamics.Comment: version in Europhys. Lett. (discussions added
VHE gamma ray absorption by galactic interstellar radiation field
Adopting a recent calculation of the Galactic interstellar radiation field,
we calculate the attenuation of the very high energy gamma rays from the
Galactic sources. The infra-red radiation background near the Galactic Center
is very intense due to the new calculation and our result shows that a cutoff
of high energy gamma ray spectrum begins at about 20 TeV and reaches about 10%
for 50 TeV gamma rays.Comment: 6 pages, 1 figure, figure is changed, conclusion not change
Muon anomalous magnetic moment and lepton flavor violation in MSSM
We give a thorough analysis of the correlation between the muon anomalous
magnetic moment and the radiative lepton flavor violating (LFV) processes
within the minimal supersymmetric standard model. We find that in the case when
the slepton mass eigenstates are nearly degenerate, , coming from
SUSY contributions, hardly depends on the lepton flavor mixing and, thus, there
is no direct relation between and the LFV processes. On the
contrary, if the first two generations' sleptons are much heavier than the 3rd
one, i.e., in the effective SUSY scenario, the two quantities are closely
related. In the latter scenario, the SUSY parameter space to account for the
experimental is quite different from the case of no lepton
flavor mixing. Especially, the Higgsino mass parameter can be either
positive or negative.Comment: 22 pages, 9 figures; Some discussions are modifie
Infrared response of ordered polarons in layered perovskites
We report on the infrared absorption spectra of three oxides where charged
superlattices have been recently observed in diffraction experiments. In
LaSrNiO, polaron localization is found to suppress the
low-energy conductivity through the opening of a gap and to split the
- vibrational manifold of the oxygen octahedra. Similar effects
are detected in SrLaMnO and in LaNiO, with
peculiar differences related to the type of charge ordering.Comment: File latex, 11 p. + 3 Figures, to appear on Phys. Rev. B (Rapid
Commun.), 1 Oct. 1996. The figures will be faxed upon request.
E-mail:[email protected] Fax: +39-6-446315
Induced magnetization in LaSrMnO/BiFeO superlattices
Using polarized neutron reflectometry (PNR), we observe an induced
magnetization of 75 25 kA/m at 10 K in a LaSrMnO
(LSMO)/BiFeO superlattice extending from the interface through several
atomic layers of the BiFeO (BFO). The induced magnetization in BFO is
explained by density functional theory, where the size of bandgap of BFO plays
an important role. Considering a classical exchange field between the LSMO and
BFO layers, we further show that magnetization is expected to extend throughout
the BFO, which provides a theoretical explanation for the results of the
neutron scattering experiment.Comment: 5 pages, 4 figures, with Supplemental Materials. To appear in
Physical Review Letter
CP Asymmetry in Charged Higgs Decays in MSSM
We discuss and compare the charge-parity (CP) asymmetry in the charged Higgs
boson decays H -> \bar{u}_i d_j for the second and third generation quarks in
the minimal supersymmetric standard model. As part of the analysis, we derive
some general analytical formulas for the imaginary parts of two-point and
three-point scalar one-loop integrals and use them for calculating vectorial
and tensorial type integrals needed for the problem under consideration. We
find that, even though each decay mode has a potential to yield a CP asymmetry
larger than 10%, further analysis based on the number of required charged Higgs
events at colliders favors the \bar{t}b, \bar{c}b, and \bar{c}s channels, whose
asymmetry could reach 10-15% in certain parts of the parameter space.Comment: 25 pages, 9 figures. Discussion about charged Higgs observability
added, typos corrected, accepted for publication in PR
Ages and Masses of 0.64 million Red Giant Branch stars from the LAMOST Galactic Spectroscopic Survey
We present a catalog of stellar age and mass estimates for a sample of
640\,986 red giant branch (RGB) stars of the Galactic disk from the LAMOST
Galactic Spectroscopic Survey (DR4). The RGB stars are distinguished from the
red clump stars utilizing period spacing derived from the spectra with a
machine learning method based on kernel principal component analysis (KPCA).
Cross-validation suggests our method is capable of distinguishing RC from RGB
stars with only 2 per cent contamination rate for stars with signal-to-noise
ratio (SNR) higher than 50. The age and mass of these RGB stars are determined
from their LAMOST spectra with KPCA method by taking the LAMOST -
giant stars having asteroseismic parameters and the LAMOST-TGAS sub-giant stars
based on isochrones as training sets. Examinations suggest that the age and
mass estimates of our RGB sample stars with SNR 30 have a median error of
30 per cent and 10 per cent, respectively. Stellar ages are found to exhibit
positive vertical and negative radial gradients across the disk, and the age
structure of the disk is strongly flared across the whole disk of
\,kpc. The data set demonstrates good correlations among stellar age,
[Fe/H] and [/Fe]. There are two separate sequences in the [Fe/H] --
[/Fe] plane: a high-- sequence with stars older than
\,8\,Gyr and a low-- sequence composed of stars with ages
covering the whole range of possible ages of stars. We also examine relations
between age and kinematic parameters derived from the Gaia DR2 parallax and
proper motions. Both the median value and dispersion of the orbital
eccentricity are found to increase with age. The vertical angular momentum is
found to fairly smoothly decrease with age from 2 to 12\,Gyr, with a rate of
about 50\,kpc\,km\,s\,Gyr. A full table of the catalog is
public available online.Comment: 16 pages, 22 figures,accepted by MNRA
- …
