4,048 research outputs found
Fractional Quantum Hall Effect in Topological Flat Bands with Chern Number Two
Recent theoretical works have demonstrated various robust Abelian and
non-Abelian fractional topological phases in lattice models with topological
flat bands carrying Chern number C=1. Here we study hard-core bosons and
interacting fermions in a three-band triangular-lattice model with the lowest
topological flat band of Chern number C=2. We find convincing numerical
evidence of bosonic fractional quantum Hall effect at the filling
characterized by three-fold quasi-degeneracy of ground states on a torus, a
fractional Chern number for each ground state, a robust spectrum gap, and a gap
in quasihole excitation spectrum. We also observe numerical evidence of a
robust fermionic fractional quantum Hall effect for spinless fermions at the
filling with short-range interactions.Comment: 5 pages, 7 figures, with Supplementary Materia
Equation of motion for multiqubit entanglement in multiple independent noisy channels
We investigate the possibility and conditions to factorize the entanglement
evolution of a multiqubit system passing through multi-sided noisy channels. By
means of a lower bound of concurrence (LBC) as entanglement measure, we derive
an explicit formula of LBC evolution of the N-qubit generalized
Greenberger-Horne-Zeilinger (GGHZ) state under some typical noisy channels,
based on which two kinds of factorizing conditions for the LBC evolution are
presented. In this case, the time-dependent LBC can be determined by a product
of initial LBC of the system and the LBC evolution of a maximally entangled
GGHZ state under the same multi-sided noisy channels. We analyze the realistic
situations where these two kinds of factorizing conditions can be satisfied. In
addition, we also discuss the dependence of entanglement robustness on the
number of the qubits and that of the noisy channels.Comment: 14 page
Fluctuation-Driven Vortex Fractionalization in Topologically Ordered Superfluids of Cold Atoms
We have studied spin structures of fluctuation-driven fractionalized vortices
and topological spin order in 2D nematic superfluids of cold sodium atoms. Our
Monte Carlo simulations suggest a softened pi-spin disclination structure in a
half-quantum vortex when spin correlations are short ranged; in addition,
calculations indicate that a unique non-local topological spin order emerges
simultaneously as cold atoms become a superfluid below a critical temperature.
We have also estimated fluctuation-dependent critical frequencies for
half-quantum vortex nucleation in rotating optical traps and discussed probing
these excitations in experiments.Comment: 5 pages, 2 figures; revised version accepted by Europhysics Letter
Berry's Phases of Ground States of Interacting Spin-One Bosons: Chains of Monopoles and Monosegments
We study Berry's connection potentials of many-body ground states of spin-one
bosons with antiferromagnetic interactions in adiabatically varying magnetic
fields. We find that Berry's connection potentials are generally determined by,
instead of usual singular monopoles, linearly positioned monosegments each of
which carries one unit of topological charge; in the absence of a magnetic
field gradient this distribution of monosegments becomes a linear chain of
monopoles. Consequently, Berry's phases consist of a series of step functions
of magnetic fields; a magnetic field gradient causes rounding of these
step-functions. We also calculate Berry's connection fields, profiles of
monosegments and show that the total topological charge is conserved in a
parameter space
Platform as a service gateway for the Fog of Things
Internet of Things (IoT), one of the key research topics in recent years, together with concepts from Fog Computing, brings rapid advancements in Smart City, Monitoring Systems, industrial control, transportation and other fields. These applications require a reconfigurable sensor architecture that can span multiple scenarios, devices and use cases that allow storage, networking and computational resources to be efficiently used on the edge of the network. There are a number of platforms and gateway architectures that have been proposed to manage these components and enable application deployment. These approaches lack horizontal integration between multiple providers as well as higher order functionalities like load balancing and clustering. This is partly due to the strongly coupled nature of the deployed applications, a lack of abstraction of device communication layers as well as a lock-in for communication protocols. This is a major obstacle for the development of a protocol agnostic application environment that allows for single application to be migrated and to work with multiple peripheral devices with varying protocols from different local gateways. This research looks at existing platforms and their shortcomings as well as proposes a messaging based modular gateway platform that enables clustering of gateways and the abstraction of peripheral communication protocols. This allows applications to send and receive messages regardless of their location and destination device protocol, creating a more uniform development environment. Furthermore, it results in a more streamlined application development and testing while providing more efficient use of the gateways resources. Our evaluation of a prototype for the system shows the need for the migration of resources and the QoS advantages of such a system. The presented use-case scenarios show that clustering can prove to be an advantage in certain use-cases as well as the deployment of a larger testing and control environment through the platform
Cooling a Micromechanical Beam by Coupling it to a Transmission Line
We study a method to cool down the vibration mode of a micro-mechanical beam
using a capacitively-coupled superconducting transmission line. The Coulomb
force between the transmission line and the beam is determined by the driving
microwave on the transmission line and the displacement of the beam. When the
frequency of the driving microwave is smaller than that of the transmission
line resonator, the Coulomb force can oppose the velocity of the beam. Thus,
the beam can be cooled. This mechanism, which may enable to prepare the beam in
its quantum ground state of vibration, is feasible under current experimental
conditions.Comment: 6 pages, 4 figure
Nanorepairers Rescue Inflammation-Induced Mitochondrial Dysfunction in Mesenchymal Stem Cells
Mitochondrial dysfunction in tissue-specific mesenchymal stem cells (MSCs) plays a critical role in cell fate and the morbidity of chronic inflammation-associated bone diseases, such as periodontitis and osteoarthritis. However, there is still no effective method to cure chronic inflammation-associated bone diseases by physiologically restoring the function of mitochondria and MSCs. Herein, it is first found that chronic inflammation leads to excess Ca2+ transfer from the endoplasmic reticulum to mitochondria, which causes mitochondrial calcium overload and further damage to mitochondria. Furthermore, damaged mitochondria continuously accumulate in MSCs due to the inhibition of mitophagy by activating the Wnt/β-catenin pathway under chronic inflammatory conditions, impairing the differentiation of MSCs. Based on the mechanistic discovery, intracellular microenvironment (esterase and low pH)-responsive nanoparticles are fabricated to capture Ca2+ around mitochondria in MSCs to regulate MSC mitochondrial calcium flux against mitochondrial dysfunction. Furthermore, the same nanoparticles are able to deliver siRNA to MSCs to inhibit the Wnt/β-catenin pathway and regulate mitophagy of the originally dysfunctional mitochondria. These precision-engineered nanoparticles, referred to as “nanorepairers,” physiologically restore the function of mitochondria and MSCs, resulting in effective therapy for periodontitis and osteoarthritis. The concept can potentially be expanded to the treatment of other diseases via mitochondrial quality control intervention
- …