11,593 research outputs found

    Platform as a service gateway for the Fog of Things

    Get PDF
    Internet of Things (IoT), one of the key research topics in recent years, together with concepts from Fog Computing, brings rapid advancements in Smart City, Monitoring Systems, industrial control, transportation and other fields. These applications require a reconfigurable sensor architecture that can span multiple scenarios, devices and use cases that allow storage, networking and computational resources to be efficiently used on the edge of the network. There are a number of platforms and gateway architectures that have been proposed to manage these components and enable application deployment. These approaches lack horizontal integration between multiple providers as well as higher order functionalities like load balancing and clustering. This is partly due to the strongly coupled nature of the deployed applications, a lack of abstraction of device communication layers as well as a lock-in for communication protocols. This is a major obstacle for the development of a protocol agnostic application environment that allows for single application to be migrated and to work with multiple peripheral devices with varying protocols from different local gateways. This research looks at existing platforms and their shortcomings as well as proposes a messaging based modular gateway platform that enables clustering of gateways and the abstraction of peripheral communication protocols. This allows applications to send and receive messages regardless of their location and destination device protocol, creating a more uniform development environment. Furthermore, it results in a more streamlined application development and testing while providing more efficient use of the gateways resources. Our evaluation of a prototype for the system shows the need for the migration of resources and the QoS advantages of such a system. The presented use-case scenarios show that clustering can prove to be an advantage in certain use-cases as well as the deployment of a larger testing and control environment through the platform

    Quark Orbital Angular Momentum in the Baryon

    Full text link
    Analytical and numerical results, for the orbital and spin content carried by different quark flavors in the baryons, are given in the chiral quark model with symmetry breaking. The reduction of the quark spin, due to the spin dilution in the chiral splitting processes, is transferred into the orbital motion of quarks and antiquarks. The orbital angular momentum for each quark flavor in the proton as a function of the partition factor κ\kappa and the chiral splitting probability aa is shown. The cancellation between the spin and orbital contributions in the spin sum rule and in the baryon magnetic moments is discussed.Comment: 26 pages, 3 figures, revised version with minor eq. no and ref. no. corrections. Discussion on the Λ\Lambda spin and a new ref. are adde

    Phenomenology of quintessino dark matter -- Production of NLSP particles

    Full text link
    In the model of quintessino as dark matter particle, the dark matter and dark energy are unified in one superfield, where the dynamics of the Quintessence drives the Universe acceleration and its superpartner, quintessino, makes up the dark matter of the Universe. This scenario predicts the existence of long lived Ï„~\tilde{\tau} as the next lightest supersymmetric particle. In this paper we study the possibility of detecting Ï„~\tilde{\tau} produced by the high energy cosmic neutrinos interacting with the earth matter. By a detailed calculation we find that the event rate is one to several hundred per year at a detector with effective area of 1km21 km^2. The study in this paper can be also applied for models of gravitino or axino dark matter particles.Comment: 16 pages, 5 figures, a new section about NLSP stau is added, references adde

    Circuit Effect On The Current-Voltage Characteristics Of Ultrasmall Tunnel Junctions

    Full text link
    We have used the method of generating functional in imaginary time to derive the current-voltage characteristics of a tunnel junction with arbitrary tunneling conductance, connected in series with an external impedance and a voltage source. We have shown that via the renormalized charging energy and the renormalized environment conductance, our nonperturbative expressions of the total action can be mapped onto the corresponding perturbative formulas. This provides a straightforward way to go beyond the perturbation theory. For the impedance being a pure resistance, we have calculated the conductance for various voltages and temperatures, and the results agree very well with experiments.Comment: 10 pages including 2 figures, to appear in PR

    Electronic Structure of KFe2_2Se2_2 from First Principles Calculations

    Full text link
    Electronic structure and magnetic properties for iron-selenide KFe2_2Se2_2 are studied by first-principles calculations. The ground state is stripe-like antiferromagnetic with calculated 2.26 μB\mu_B magnetic moment on Fe atoms; and the J1J_1, J2J_2 coupling strengths are calculated to be 0.038 eV and 0.029 eV. The states around EFE_F are dominated by the Fe-3d orbitals which hybridize noticeably to the Se-4p orbitals. While the band structure of KFe2_2Se2_2 is similar to a heavily electron-doped BaFe2_2As2_2 or FeSe system, the Fermi surface of KFe2_2Se2_2 is much closer to \fs11 system since the electron sheets around MM is symmetric with respect to xx-yy exchange. These features, as well as the absence of Fermi surface nesting, suggest that the parental KFe2_2Se2_2 could be regarded as an electron over-doped 11 system with possible local moment magnetism.Comment: accepted by Chinese Physics Letter, to appear as Chinese Physics Letter, Vol 28, page 057402 (2011

    Hadronic Production of the Doubly Charmed Baryon Ξcc\Xi_{cc} with Intrinsic Charm

    Full text link
    The effects of the intrinsic charm on the hadronic production of Ξcc\Xi_{cc} are studied. By taking reasonable intrinsic charm component into account, the change of the theoretical prediction on the production of Ξcc\Xi_{cc} for LHC and Tevatron is small, but in contrast it may enhance significantly for SELEX. The reason is that the collision energy at LHC and Tevatron is so large that the gluon-gluon fusion sub-process, which is irrelevant to intrinsic charm, becomes dominant. But the situation for SELEX is quite different. Our numerical results for SELEX show that by considering all the contributions from various sub-processes, the predicted cross-section may be enhanced by a factor so big as 10210^2 due to a modulating intrinsic charm being taken into account. Therefore, the hadronic production of Ξcc\Xi_{cc} at SELEX may be sensitive enough in observing the intrinsic charm inside the incident hadrons.Comment: 18 pages, 8 figures. More discussions are adde
    • …
    corecore