7,169 research outputs found

    Statefinder Parameters for Tachyon Dark Energy Model

    Full text link
    In this paper we study the statefinder parameters for the tachyon dark energy model. There are two kinds of stable attractor solutions in this model. The statefinder diagrams characterize the properties of the tachyon dark energy model. Our results show that the evolving trajectories of the attractor solutions lie in the total region and pass through the LCDM fixed point, which is different from other dark energy model.Comment: 5 pages, 5 figures, accepted by MPL

    Parameter Estimation for Class a Modeled Ocean Ambient Noise

    Get PDF
    A Gaussian distribution is used by all traditional underwater acoustic signal processors, thus neglecting the impulsive property of ocean ambient noise in shallow waters. Undoubtedly, signal processors designed with a Gaussian model are sub-optimal in the presence of non-Gaussian noise. To solve this problem, firstly a quantile-quantile (Q-Q) plot of real data was analyzed, which further showed the necessity of investigating a non-Gaussian noise model. A Middleton Class A noise model considering impulsive noise was used to model non-Gaussian noise in shallow waters. After that, parameter estimation for the Class A model was carried out with the characteristic function. Lastly, the effectiveness of the method proposed in this paper was verified by using simulated data and real data

    Peierls distorted chain as a quantum data bus for quantum state transfer

    Full text link
    We systematically study the transfer of quantum state of electron spin as the flying qubit along a half-filled Peierls distorted tight-binding chain described by the Su-Schrieffer-Heeger (SSH) model, which behaves as a quantum data bus. This enables a novel physical mechanism for quantum communication with always-on interaction: the effective hopping of the spin carrier between sites AA and BB connected to two sites in this SSH chain can be induced by the quasi-excitations of the SSH model. As we prove, it is the Peierls energy gap of the SSH quasi-excitations that plays a crucial role to protect the robustness of the quantum state transfer process. Moreover, our observation also indicates that such a scheme can also be employed to explore the intrinsic property of the quantum system.Comment: 10 pages, 6 figure

    Walks on weighted networks

    Full text link
    We investigate the dynamics of random walks on weighted networks. Assuming that the edge's weight and the node's strength are used as local information by a random walker, we study two kinds of walks, weight-dependent walk and strength-dependent walk. Exact expressions for stationary distribution and average return time are derived and confirmed by computer simulations. We calculate the distribution of average return time and the mean-square displacement for two walks on the BBV networks, and find that a weight-dependent walker can arrive at a new territory more easily than a strength-dependent one.Comment: 4 pages, 5 figures. minor modifications. Comments and suggestions are favored by the author

    The mechanical relaxation study of polycrystalline MgCNi3

    Full text link
    The mechanical relaxation spectra of a superconducting and a non-superconducting MgCNi3 samples were measured from liquid nitrogen temperature to room temperature at frequency of kilohertz. There are two internal friction peaks (at 300 K labeled as P1 and 125 K as P2) for the superconducting sample. For the non-superconducting one, the position of P1 shifts to 250 K, while P2 is almost completely depressed. It is found that the peak position of P2 shifts towards higher temperature under higher measuring frequency. The calculated activation energy is 0.13eV. We propose an explanation relating P2 to the carbon atom jumping among the off-center positions. And further we expect that the behaviors of carbon atoms maybe correspond to the normal state crossovers around 150 K and 50 K observed by many other experiments.Comment: 4 figure
    corecore