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Abstract. A Gaussian distribution is used by all traditional underwater acoustic 

signal processors, thus neglecting the impulsive property of ocean ambient noise 

in shallow waters. Undoubtedly, signal processors designed with a Gaussian 

model are sub-optimal in the presence of non-Gaussian noise. To solve this 

problem, firstly a quantile-quantile (Q-Q) plot of real data was analyzed, which 

further showed the necessity of investigating a non-Gaussian noise model. A 
Middleton Class A noise model considering impulsive noise was used to model 

non-Gaussian noise in shallow waters. After that, parameter estimation for the 

Class A model was carried out with the characteristic function. Lastly, the 

effectiveness of the method proposed in this paper was verified by using 

simulated data and real data. 

Keywords: characteristic function; class A; noise modeling;non-Gaussian noise; 

parameter estimation; quantile-quantile (Q-Q) plot. 

1 Introduction 

The ocean’s ambient noise is the main factor limiting the performance of 

underwater acoustic signal processors. Because of the central limit theorem, 

most signal processors, such as the communication schemes developed by 
Istepanian and Stojanovic in [1] and the matched filtering developed by Zhang, 

et al. in [2,3], are based on a Gaussian distribution. Actually, groups of 

snapping shrimp in warm shallow waters produce an impulsive signal according 

to Chitre [4]. Besides that, there are also interferences such as industrial noise, 
strong winds, heavy rain, rainstorms, and so on. These noises display non-

Gaussian behavior. Signal processors using a Gaussian noise model are sub-

optimal in the presence of non-Gaussian noise. In [5], Jiang, et al. have 
demonstrated that non-linear processors outperform linear processors. In fact, 

the noise distribution is important for the development of underwater signal 

processors. With prior knowledge of the noise distribution, optimal or near-
optimal signal processors or communication schemes can be designed. 
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Modeling non-Gaussian noise in water is much slower than in an 

electromagnetic environment. Traditional noise analysis methods mainly 

include signal self-correlation, power spectrum estimation, short-time Fourier 

transform, Wigner-Ville analysis, wavelet analysis, and so on. Second-order 
statistical characteristics are used by these methods, indirectly adopting a 

Gaussian model based on Liu’s work in [6]. In [7], high-order statistical 

characteristics including high-order moment and accumulation spectra are 
employed by Li. Unfortunately, high-order moment and accumulation are 

usually very complicated, requiring large calculation. Fourth-order moment and 

accumulation are exploited in practice. Obviously, non-Gaussian noise cannot 

be completely described. There are many other distributions to model non-
Gaussian noise, such as Stein’s Gaussian mixture in [8], the Laplacian model 

developed by Miller and Thomas in [9], and symmetric alpha-stable distribution 

(SαS) developed by Nikias and Shao in [10]. A Gaussian-Laplacian mixture 
model cannot truly depict the heavy-tailed characteristic of impulsive noise. The 

SαS model does not possess finite second-order moment or the closed form of a 

probability density function. Besides, none of these noise models possess a 
strong physical or theoretical justification.  

In this research, firstly, a quantile-quantile (Q-Q) plot was used to analyze real 

data. It showed the necessity of investigating a non-Gaussian noise model. Then, 

ocean ambient noise based on a Class A model was studied. With the 
characteristic function, the parameters of the Class A model were estimated. 

Lastly, the processed results of a simulation and real data were used to verify 

the proposed method. 

2 Class A Model 

With a complicated formula derivation and some approximations, Middleton 

deduced the probability density function for Class A noise [11,12]. It can be 
expressed as: 
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where m is the number of active impulses. Eq. (1) is a weighted sum of 

Gaussian distributions. 2

m
  is the variance of the m-th active impulse. It is given 

by: 
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In Eq. (2), 2 2/
G I

  ≜  is the Gaussian to interference noise power ratio with 

Gaussian noise power 2

G
  and interference noise power 2

I
 . The total noise 

power is 2 2 2

G I
    .  is called the impulsive index or overlap index, which 

describes the intensity with which the impulsive events occur. The noise would 

tend to be more Gaussian with the increase of A . 

In fact, the amplitude distribution of the background noise plays an important 

role in underwater signal processing or communication schemes. The following 

parts of this paper will discuss parameter estimation based on the Class A noise 

model as expressed in Eq. (1). 

3 Parameter Estimation Based on Class A Model 

3.1 Noise Analyses 

The quantile-quantile (Q-Q) plot employed by Zhang, et al. in [13] is a 

graphical method that compares two probability distributions by plotting their 

quantiles against each other. It is a more powerful approach than the common 
method of comparing the histograms of samples. To some degree, it is a non-

parametric approach to compare the underlying distributions of the samples. 

Based on the Q-Q plot, the distributions between the collected data and the 

Gaussian model can be intuitively compared. For N samples 
1 2

{ , , , }
N

Y y y y ⋯  

in ascending order, the quantile function is expressed as: 
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The quantile function specifies the value 
i

q  at which the probability of the 

random variable Y is less than or equal to the given probability iP . In Eq. (3), 

( 0.5) , 1, 2, ,iP i N i N    ⋯ . 
iq  is the instantaneous amplitude determined by 

iP . According to the theory of statistics [13], the relationship between 
iq  and 

( 1,2, , )iy i N  ⋯  is nearly a 45° line when the collected samples are subject to a 

Gaussian distribution.  

Figure 1 shows the real data of the noise. A Q-Q plot of the real data, denoted 
by the dotted curve, based on the method presented in this section, is shown in 

Figure 2. A Q-Q plot of the Gaussian data, represented by the dashed line, is 

also depicted in Figure 2. It is a 45° line. From Figure 2, it can be seen that the 
middle part of the dotted curve almost follows the 45° line while the tails of the 

dotted curve deviate from the dashed 45° line. This indicates that the 

distributions of the real data and the Gaussian data are not identical. If the 

A
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Gaussian distribution is used to model the noise, the performance of the 

underwater signal processors is degraded seriously. Therefore, it is necessary to 

investigate a non-Gaussian model of ocean ambient noise. 

 

Figure 1 Real data. Figure 2 Q-Q plot. 

3.2 Characteristic Function of Class A Noise 

It is supposed that the random variable Y is subject to a normal Gaussian 

distribution. The mean value and variance are 0 and 2

G , respectively. Based on 

the definition of the characteristic function from Peebles [14], the characteristic 
function of Gaussian noise can be easily deduced. The expression is given by: 
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where  0,2 ,2 2 , , 2M M M M     ⋯  is the frequency and M is the 

number of frequency samples. From Eq. (1), the noise variance can be easily got. 

It is given by  22 2

0

E ( / !)A m

m
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 ≜ , which is the average power of the 

noise. In order to simplify the deduction of the formula, a new variable 
K A  is introduced. Thus, Eq. (2) can be changed to: 
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According to the work developed by Jiang et al. in [5], the characteristic 

function of Class A noise is expressed as: 
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In Eq. (6), vector 2 T
[ , , ]A Kθ  denotes the parameter vector. The superscript T 

represents the transposition. Based on Eq. (4), Eq. (6) is given by: 
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Based on Eq. (5), Eq. (7) is expressed as: 
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Therefore, the characteristic function of Class A noise is given by: 
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3.3 Parameter Estimation 

Based on Eq. (10) and the work developed by Jiang et al. in [5], this section 

mainly concentrates on the algorithm for parameter estimation of the Class A 

model. The purpose is to estimate the model parameters T[ , , ]A K θ  with N 

collected samples. Here, 2   is the average power of Class A noise. Based 

on the natural logarithm, Eq. (10) can be expressed as: 
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The characteristic function plays an important role in the parameter estimation 

of the Class A noise model. First, the characteristic function is estimated based 
on the collected samples. The collected data are divided into L sub-blocks. Each 

sub-block has NL samples. The total number of samples is LN L N  . The 

characteristic function is estimated through the average operation related to the 
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characteristic functions of each sub-block. For the l-th sub-block, the 

characteristic function is given by: 

  
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Averaging the characteristic functions related to each sub-block, we get the 

characteristic function of the collected data. It is expressed as follows: 
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The error, defined as the difference between Eq. (11) and Eq. (13), is given by: 
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The parameters T[ , , ]A K θ  are estimated by minimizing the square error, 
T ( ) ( )F θ F θ . Substituting Eq. (11) into Eq. (14), we get: 
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Based on the method of steepest descent, the gradient of the square error 
T ( ) ( )F θ F θ  is expressed as T ( ) ( )D θ F θ . The error derivation ( )D θ  is: 
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According to Eq. (15), the elements in Eq. (16) are given by: 
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Using the gradient of the square error, the adjustment quantity is expressed as: 
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In Eq. (18), the gradient is further normalized by T ( ) ( )r rD θ D θ .  I  is used to 

overcome the numerical instability of T ( ) ( )r rD θ D θ .   is a regularization 

parameter; and I  is the unit matrix. The superscript r represents the r-th 

iteration. Then, the parameters are updated based on the adjustment quantity as 
shown in Eq. (18). The updated parameters used in the next iteration are given 

by: 

 1r r r   θ θ θ  (19) 

In Eq. (19),   is the step factor. A block diagram of the proposed method based 

on the method of steepest descent is shown in Figure 3. First, the parameters 
T[ , , ]A K θ  are initialized. Based on Eqs. (15) and (16), the error and 

derivation are calculated in the second step. In the third step, the adjustment 

quantity of the parameters is calculated with Eq. (18). Then, the parameters are 

updated using Eq. (19). The iteration stops when square error T ( ) ( )F θ F θ  is 

constrained within the expected error. Otherwise, the iteration continues with 

the second step in Figure 3. 

T
F F

TF F

 

Figure 3 Block diagram of the proposed method. 
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4 Data Processing Results 

4.1 Simulation Experiment 

Simulated data were used to test the proposed method. The parameters used for 

the Class A noise simulation were 0.15A  , 0.002  , and 2.5  . With the 

proposed method, the estimated results of the impulsive index, the product 

between the impulsive index and the Gaussian to interference noise power ratio 

(PIR), and the noise power are shown in Figures 4, 5, and 6, respectively. From 

these figures, it can be seen that the proposed method possesses the highest 
convergence speed. After 50 iterations, the estimated parameters were tending 

towards stability. Besides, the estimated parameters are close to the theoretical 

values. This means that the proposed method can accurately estimate the 
parameters for the Class A noise model. 

 
Figure 4 Impulsive index of simulated data. 

  
(a) (b) 

Figure 5 Product of impulsive index and the Gaussian to interference noise 

power ratio (PIR). (a) PIR of simulated data; (b) closer look. 
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Figure 6 Noise power of simulated data. 

Based on the simulated data, the empirical characteristic function can be 

obtained with Eqs. (12) and (13). With the simulation parameters for the Class 

A noise model, the theoretical characteristic function can be calculated. Using 
the estimated parameters, the estimated characteristic function is got. Therefore, 

three characteristic functions are obtained for the simulated noise. Comparing 

the estimated characteristic function with the empirical data and the theoretical 
data, the performance of the proposed method can be easily found. Figure 7 

shows the three characteristic functions described above.  From Figure 7, the 

estimated characteristic function agrees well with the empirical and the 
theoretical data, which further verifies the effectiveness of the method proposed 

in this paper. 

 

 

Figure 7   Characteristic function of simulated data. 
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The amplitude probability distribution (APD) used by Field and Lewinstein in 

[15] and by Chrissan in [16] describes the statistical property of random signals. 

It is defined as the cumulative distribution of the probability that noise 

amplitude x exceeds a specified threshold, x0. It is written as: 

 0 0( ) ( )APD x P x x   (20) 

The horizontal axis of APD denotes the probability 
0( )P x x , while the 

threshold x0 is represented by the vertical axis. In practice, both axes are 

adjusted by the lognormal operations  00.5lg In ( )P x x    and  10 010log x , 

respectively. After the lognormal operations, the APD of the Gaussian noise is 
transformed to a straight line.  

 

Figure 8 APD of simulated data. 

It is well known that Gaussian distribution is uniquely determined by two 

parameters, i.e. the mean value and the variance. With the mean value and the 

variance of the simulated data, the APD of Gaussian noise can be depicted as 
shown in Figure 8. It is a straight line, which cannot describe the simulated data 

due to their non-Gaussian properties. Based on the log method used by Nikias 

and Shao in [10], the parameters of the SαS model, i.e. the characteristic 
exponent and the scale parameter, can be estimated. Then, the APD of the noise 

in the SαS model is obtained. Observing the APD of the SαS model in Figure 8, 

the lower portion of the curve is in very good agreement with the curve of the 

simulated data. However, the upper portion of the curve is far removed from the 
curve of the simulated data. This indicates that the SαS model cannot describe 

impulsive noise. Using the method proposed in this paper, we can get the 

estimated parameters of the Class A model. Then, the APD is plotted, as shown 
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in Figure 8. It can be seen that the curve of the Class A model agrees well with 

the curve of the simulated data. This means that the Class A model can describe 

the simulated data well. 

4.2 Real Data Processing 

This section deals with the real data shown in Figure 1. The estimated results of 

the impulsive index, PIR, and the signal power are shown in Figures 9, 10, and 

11, respectively. Observing these figures, the same conclusions can be drawn as 
described in Section 4.1. With the real data, the estimated parameters tend 

towards stability after 40 iterations. Meanwhile, the estimated noise power 

represented by the solid curve in Figure 11 is close to the statistical power 
indicated by the dashed line. 

 

Figure 9 Impulsive index of the real data. 

 

Figure 10  Product of impulsive index and the Gaussian to interference noise 

power ratio (PIR). 
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Figure 11 Noise power of the real data. 

Figure 12 shows the empirical characteristic function, the characteristic function 

after the first iteration and the characteristic function after the last iteration. 

Compared with the empirical characteristic function, the characteristic function 
after the first iteration does not meet the requirements of parameter estimation. 

However, the characteristic function after the last iteration agrees almost 

completely with the empirical one. This indicates that the presented method is 
effective for parameter estimation of the Class A model. Figure 13 shows the 

APDs related to the Class A model, the SαS model, the Gaussian model, and the 

real data. From this figure, the same conclusions can be drawn as in the 
previous section.  

 

Figure 12 Characteristic function of the real data. 
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Figure 13 APD of the real data. 

Based on the simulation experiment and the real data processing results, the 
impulsive noise cannot be simply modeled with traditional noise models, 

because it would degrade the performances of subsequent signal processors, 

such as signal detection, communication, and so on. 

5 Conclusions 

In shallow waters there are high deviations in the amplitude of the noise 

samples due to impulsive noise. The distribution of this noise decays slower in 
the tails than the Gaussian model predicts. If signal processors developed in a 

Gaussian noise channel are used, their performance degrades. Thus, the 

Gaussian distribution is not suitable for modeling impulsive noise. Based on the 
Q-Q plot, it was shown that real data from shallow waters are not subject to the 

Gaussian model. Actually, the distribution of ocean ambient noise plays an 

important role in the development of underwater acoustic signal processors. In 

this study, the most famous heavy-tailed distribution, i.e. the Middleton Class A 
model, was used to describe impulsive noise in shallow waters. Along with the 

characteristic function, a parameter estimation method was presented. The 

processing results of simulated and real data showed that the proposed method 
has a high convergence speed. Besides, the estimated parameters were close to 

the theoretical values. Therefore, the conclusion can be drawn that the Class A 

model can effectively describe impulsive noise in shallow waters. 
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Nomenclature 

A = impulsive index or overlap index 

D = error derivation 

F = 
error between characteristic function of empirical data and that of 

real data 
f = probability density function 

� = 
product between impulsive index and Gaussian to interference 

noise power ratio 

L = total number of segmented sub-blocks 

m = number of active impulses 

M = the number of frequency samples 

N = total samples of collected data 

NL = number of sampled data for the l-th block 
P = probability 

  = Gaussian to interference noise power ratio 

  = regularization parameter 

θ  = parameter vector 
θ  = corrective value of parameters 
  = step size 

2  = noise power 
2

G  = Gaussian noise power 
2

I
  = interference noise power 

2

m
  = power of the m-th active impulse 

⌢  = statistical characteristic function with collected data 

A  = characteristic function of Class A noise 

G  = characteristic function of Gaussian noise 

l⌢  = statistical characteristic function for the l-th block 

  = frequency 

  = noise power 
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