43 research outputs found

    Efficient thermoelectric energy conversion on quasi-localized electron states in diameter modulated nanowires

    Get PDF
    It is known that the thermoelectric efficiency of nanowires increases when their diameter decreases. Recently, we proposed that increase of the thermoelectric efficiency could be achieved by modulating the diameter of the nanowires. We showed that the electron thermoelectric properties depend strongly on the geometry of the diameter modulation. Moreover, it has been shown by another group that the phonon conductivity decreases in nanowires when they are modulated by dots. Here, the thermoelectric efficiency of diameter modulated nanowires is estimated, in the ballistic regime, by taking into account the electron and phonon transmission properties. It is demonstrated that quasi-localized states can be formed that are prosperous for efficient thermoelectric energy conversion

    Weak localization effect on thermomagnetic phenomena

    Full text link
    The quantum transport equation (QTE) is extended to study weak localization (WL) effects on galvanomagnetic and thermomagnetic phenomena. QTE has many advantages over the linear response method (LRM): (i) particle-hole asymmetry which is necessary for the Hall effect is taken into account by the nonequilibrium distribution function, while LRM requires expansion near the Fermi surface, (ii) when calculating response to the temperature gradient, the problem of WL correction to the heat current operator is avoided, (iii) magnetic field is directly introduced to QTE, while the LRM deals with the vector potential and and special attention should be paid to maintain gauge invariance, e.g. when calculating the Nernst effect the heat current operator should be modified to include the external magnetic field. We reproduce in a very compact form known results for the conductivity, the Hall and the thermoelectric effects and then we study our main problem, WL correction to the Nernst coefficient (transverse thermopower).Comment: 20 pages 2 figure

    Phonon-drag effects on thermoelectric power

    Full text link
    We carry out a calculation of the phonon-drag contribution SgS_g to the thermoelectric power of bulk semiconductors and quantum well structures for the first time using the balance equation transport theory extended to the weakly nonuniform systems. Introducing wavevector and phonon-mode dependent relaxation times due to phonon-phonon interactions, the formula obtained can be used not only at low temperatures where the phonon mean free path is determined by boundary scattering, but also at high temperatures. In the linear transport limit, SgS_g is equivalent to the result obtained from the Boltzmann equation with a relaxation time approximation. The theory is applied to experiments and agreement is found between the theoretical predictions and experimental results. The role of hot-electron effects in SgS_g is discussed. The importance of the contribution of SgS_g to thermoelectric power in the hot-electron transport condition is emphasized.Comment: 8 pages, REVTEX 3.0, 7 figures avilable upon reques

    Finite-Size and surface effects in maghemite nanoparticles: Monte Carlo simulations

    Get PDF
    Finite-size and surface effects in fine particle systems are investigated by Monte Carlo simulation of a model of a Ī³\gamma-Fe2_2O3_3 (maghemite) single particle. Periodic boundary conditions have been used to simulate the bulk properties and the results compared with those for a spherical shaped particle with free boundaries to evidence the role played by the surface on the anomalous magnetic properties displayed by these systems at low temperatures. Several outcomes of the model are in qualitative agreement with the experimental findings. A reduction of the magnetic ordering temperature, spontaneous magnetization, and coercive field is observed as the particle size is decreased. Moreover, the hysteresis loops become elongated with high values of the differential susceptibility, resembling those from frustrated or disordered systems. These facts are consequence of the formation of a surface layer with higher degree of magnetic disorder than the core, which, for small sizes, dominates the magnetization processes of the particle. However, in contradiction with the assumptions of some authors, our model does not predict the freezing of the surface layer into a spin-glass-like state. The results indicate that magnetic disorder at the surface simply facilitates the thermal demagnetization of the particle at zero field, while the magnetization is increased at moderate fields, since surface disorder diminishes ferrimagnetic correlations within the particle. The change in shape of the hysteresis loops with the particle size demonstrates that the reversal mode is strongly influenced by the reduced atomic coordination and disorder at the surface.Comment: Twocolumn RevTex format. 19 pages, 15 Figures included. Submitted to Phys. Rev.

    Thermoelectric power of nondegenerate Kane semiconductors under the conditions of mutual electron-phonon drag in a high electric field

    Full text link
    The thermoelectric power of nondegenerate Kane semiconductors with due regard for the electron and phonon heating, and their thermal and mutual drags is investigated. The electron spectrum is taken in the Kane two-band form. It is shown that the nonparabolicity of electron spectrum significantly influences the magnitude of the thermoelectric power and leads to a change of its sign and dependence on the heating electric field. The field dependence of the thermoelectric power is determined analytically under various drag conditions.Comment: 25 pages, RevTex formatted, 3 table

    Phonon drag thermopower and weak localization

    Full text link
    Previous experimental work on a two-dimensional (2D) electron gas in a Si-on-sapphire device led to the conclusion that both conductivity and phonon drag thermopower SgS^g are affected to the same relative extent by weak localization. The present paper presents further experimental and theoretical results on these transport coefficients for two very low mobility 2D electron gases in Ī“āˆ’\delta-doped GaAs/Gax_xAl1āˆ’x_{1-x}As quantum wells. The experiments were carried out in the temperature range 3-7K where phonon drag dominates the thermopower and, contrary to the previous work, the changes observed in the thermopower due to weak localization were found to be an order of magnitude less than those in the conductivity. A theoretical framework for phonon drag thermopower in 2D and 3D semiconductors is presented which accounts for this insensitivity of SgS^g to weak localization. It also provides transparent physical explanations of many previous experimental and theoretical results.Comment: 19 page Revtex file, 3 Postscript figur

    Development of a new marker system for identifying the complex members of the low-molecular-weight glutenin subunit gene family in bread wheat (Triticum aestivum L.)

    Get PDF
    Low-molecular-weight glutenin subunits (LMW-GSs) play an important role in determining the bread-making quality of bread wheat. However, LMW-GSs display high polymorphic protein complexes encoded by multiple genes, and elucidating the complex LMW-GS gene family in bread wheat remains challenging. In the present study, using conventional polymerase chain reaction (PCR) with conserved primers and high-resolution capillary electrophoresis, we developed a new molecular marker system for identifying LMW-GS gene family members. Based on sequence alignment of 13 LMW-GS genes previously identified in the Chinese bread wheat variety Xiaoyan 54 and other genes available in GenBank, PCR primers were developed and assigned to conserved sequences spanning the length polymorphism regions of LMW-GS genes. After PCR amplification, 17 DNA fragments in Xiaoyan 54 were detected using capillary electrophoresis. In total, 13 fragments were identical to previously identified LMW-GS genes, and the other 4 were derived from unique LMW-GS genes by sequencing. This marker system was also used to identify LMW-GS genes in Chinese Spring and its group 1 nulliā€“tetrasomic lines. Among the 17 detected DNA fragments, 4 were located on chromosome 1A, 5 on 1B, and 8 on 1D. The results suggest that this marker system is useful for large-scale identification of LMW-GS genes in bread wheat varieties, and for the selection of desirable LMW-GS genes to improve the bread-making quality in wheat molecular breeding programmes

    The annealed-nanograin phase: A route to simultaneous increase of the conductivity and the Seebeck coefficient and high thermoelectric performance

    No full text
    We introduce the annealed-nanograin (a-NG) phase effect and propose it as a new route to high thermoelectric performance. We support that in granular materials with small nanograins, the core of the grains (G-phase) and the grain boundaries (GB-phase) can be electrostatically coupled so that transport is dominated by a single phase, the a-NG phase. We show that concurrent increase in the mobility and the Seebeck coefficient can take place when originally defective nanograins are thermally annealed, because defect repair reduces scatterers in the core of the nanograins and concurrently stimulates more ionized impurities and higher energy barriers at the grain boundaries to fulfill charge neutrality. We compare the a-NG phase with the two phases of a composite grain (the G-phase and the GB-phase) and show that a transition takes place from dominant ionized impurity scattering to dominant phonon scattering. This transition is the signature of the formation of the a-NG phase and the thermoelectric power factor enhancement. Our model has been validated by interpretation of experimental observations in highly B-doped nanocrytalline films. Our findings can be used to engineer nanostructured materials with high thermoelectric performance. Published under license by AIP Publishing
    corecore