3,215 research outputs found

    Multi-scale simulation of the nano-metric cutting process

    Get PDF
    Molecular dynamics (MD) simulation and the finite element (FE) method are two popular numerical techniques for the simulation of machining processes. The two methods have their own strengths and limitations. MD simulation can cover the phenomena occurring at nano-metric scale but is limited by the computational cost and capacity, whilst the FE method is suitable for modelling meso- to macro-scale machining and for simulating macro-parameters, such as the temperature in a cutting zone, the stress/strain distribution and cutting forces, etc. With the successful application of multi-scale simulations in many research fields, the application of simulation to the machining processes is emerging, particularly in relation to machined surface generation and integrity formation, i.e. the machined surface roughness, residual stress, micro-hardness, microstructure and fatigue. Based on the quasi-continuum (QC) method, the multi-scale simulation of nano-metric cutting has been proposed. Cutting simulations are performed on single-crystal aluminium to investigate the chip formation, generation and propagation of the material dislocation during the cutting process. In addition, the effect of the tool rake angle on the cutting force and internal stress under the workpiece surface is investigated: The cutting force and internal stress in the workpiece material decrease with the increase of the rake angle. Finally, to ease multi-scale modelling and its simulation steps and to increase their speed, a computationally efficient MATLAB-based programme has been developed, which facilitates the geometrical modelling of cutting, the simulation conditions, the implementation of simulation and the analysis of results within a unified integrated virtual-simulation environment

    Pretreatment metabotype as a predictor of response to sertraline or placebo in depressed outpatients: a proof of concept

    Get PDF
    The purpose of this study was to determine whether the baseline metabolic profile (that is, metabotype) of a patient with major depressive disorder (MDD) would define how an individual will respond to treatment. Outpatients with MDD were randomly assigned to sertraline (up to 150 mg per day) (N=43) or placebo (N=46) in a double-blind 4-week trial. Baseline serum samples were profiled using the liquid chromatography electrochemical array; the output was digitized to create a ‘digital map' of the entire measurable response for a particular sample. Response was defined as ⩾50% reduction baseline to week 4 in the 17-item Hamilton Rating Scale for Depression total score. Models were built using the one-out method for cross-validation. Multivariate analyses showed that metabolic profiles partially separated responders and non-responders to sertraline or to placebo. For the sertraline models, the overall correct classification rate was 81% whereas it was 72% for the placebo models. Several pathways were implicated in separation of responders and non-responders on sertraline and on placebo including phenylalanine, tryptophan, purine and tocopherol. Dihydroxyphenylacetic acid, tocopherols and serotonin were common metabolites in separating responders and non-responders to both drug and placebo. Pretreatment metabotypes may predict which depressed patients will respond to acute treatment (4 weeks) with sertraline or placebo. Some pathways were informative for both treatments whereas other pathways were unique in predicting response to either sertraline or placebo. Metabolomics may inform the biochemical basis for the early efficacy of sertraline

    In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging

    Get PDF
    Author Manuscript 2012 March 1.The design of erodible biomaterials relies on the ability to program the in vivo retention time, which necessitates real-time monitoring of erosion. However, in vivo performance cannot always be predicted by traditional determination of in vitro erosion[superscript 1, 2] , and standard methods sacrifice samples or animals[superscript 3], preventing sequential measures of the same specimen. We harnessed non-invasive fluorescence imaging to sequentially follow in vivo material-mass loss to model the degradation of materials hydrolytically (PEG:dextran hydrogel) and enzymatically (collagen). Hydrogel erosion rates in vivo and in vitro correlated, enabling the prediction of in vivo erosion of new material formulations from in vitro data. Collagen in vivo erosion was used to infer physiologic in vitro conditions that mimic erosive in vivo environments. This approach enables rapid in vitro screening of materials, and can be extended to simultaneously determine drug release and material erosion from a drug-eluting scaffold, or cell viability and material fate in tissue-engineering formulations.National Institutes of Health (U.S.) (GM/HL 49039)National Institutes of Health (U.S.) (UL1 RR 025758

    Genome-wide association study of male sexual orientation

    Get PDF
    Family and twin studies suggest that genes play a role in male sexual orientation. We conducted a genome-wide association study (GWAS) of male sexual orientation on a primarily European ancestry sample of 1,077 homosexual men and 1,231 heterosexual men using Affymetrix single nucleotide polymorphism (SNP) arrays. We identified several SNPs with p < 10 -5 , including regions of multiple supporting SNPs on chromosomes 13 (minimum p = 7.5 × 10 -7 ) and 14 (p = 4.7 × 10 -7 ). The genes nearest to these peaks have functions plausibly relevant to the development of sexual orientation. On chromosome 13, SLITRK6 is a neurodevelopmental gene mostly expressed in the diencephalon, which contains a region previously reported as differing in size in men by sexual orientation. On chromosome 14, TSHR genetic variants in intron 1 could conceivably help explain past findings relating familial atypical thyroid function and male homosexuality. Furthermore, skewed X chromosome inactivation has been found in the thyroid condition, Graves' disease, as well as in mothers of homosexual men. On pericentromeric chromosome 8 within our previously reported linkage peak, we found support (p = 4.1 × 10 -3 ) for a SNP association previously reported (rs77013977, p = 7.1 × 10 -8 ), with the combined analysis yielding p = 6.7 × 10 -9 , i.e., a genome-wide significant association

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host

    Get PDF
    Schmallenberg virus (SBV) is an emerging orthobunyavirus of ruminants associated with outbreaks of congenital malformations in aborted and stillborn animals. Since its discovery in November 2011, SBV has spread very rapidly to many European countries. Here, we developed molecular and serological tools, and an experimental in vivo model as a platform to study SBV pathogenesis, tropism and virus-host cell interactions. Using a synthetic biology approach, we developed a reverse genetics system for the rapid rescue and genetic manipulation of SBV. We showed that SBV has a wide tropism in cell culture and “synthetic” SBV replicates in vitro as efficiently as wild type virus. We developed an experimental mouse model to study SBV infection and showed that this virus replicates abundantly in neurons where it causes cerebral malacia and vacuolation of the cerebral cortex. These virus-induced acute lesions are useful in understanding the progression from vacuolation to porencephaly and extensive tissue destruction, often observed in aborted lambs and calves in naturally occurring Schmallenberg cases. Indeed, we detected high levels of SBV antigens in the neurons of the gray matter of brain and spinal cord of naturally affected lambs and calves, suggesting that muscular hypoplasia observed in SBV-infected lambs is mostly secondary to central nervous system damage. Finally, we investigated the molecular determinants of SBV virulence. Interestingly, we found a biological SBV clone that after passage in cell culture displays increased virulence in mice. We also found that a SBV deletion mutant of the non-structural NSs protein (SBVΔNSs) is less virulent in mice than wild type SBV. Attenuation of SBV virulence depends on the inability of SBVΔNSs to block IFN synthesis in virus infected cells. In conclusion, this work provides a useful experimental framework to study the biology and pathogenesis of SBV

    Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci.

    Get PDF
    Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10(-6)) and rs8057927 in CDH13 (P=1.39 × 10(-5)). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10(-7)). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10(-7)). This signal was replicated in the follow-up analysis (P=2.3 × 10(-2)). Significant interaction with maternal CMV infection was found for rs7902091 (P(SNP × CMV)=7.3 × 10(-7)) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of including environmental factors in genetic studies
    corecore