22 research outputs found

    New Binding Mode to TNF-Alpha Revealed by Ubiquitin-Based Artificial Binding Protein

    Get PDF
    A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF)-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1∶3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins – designed ankyrin repeat proteins – without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies

    Localization of the active site of human tumour necrosis factor (hTNF) by mutational analysis.

    No full text
    In order to define the active site(s) of human tumour necrosis factor (hTNF), we mutagenized its gene at random and directly screened the resulting population for loss of cytotoxic activity on L929 cells. Four biologically inactive mutant proteins (Arg32----Trp, Leu36----Phe, Ser86----Phe and Ala84----Val) behaved similar to the wild-type in various physico-chemical assays. The residues were positioned on a 3D structural model and were found to cluster together at the base of the molecule at each side of the groove that separates two monomers in the trimeric structure. A very conservative mutation at one of these sites (Ala84----Val) almost completely abolished cytotoxic activity. Amino acid alterations in three other residues in close proximity to this receptor binding site were introduced: replacements at positions 29 and 146 clearly reduced cytotoxicity only when non-conservative alterations were introduced (Leu29----Ser and Glu146----Lys), suggesting an indirect influence on the active site. However, a conservative mutation at position 91 (Val----Ala) caused a significant drop (500-fold) in bioactivity which suggests that Val91 may also play a direct role in receptor recognition. Our results favor a model in which each TNF molecule has three receptor-interaction sites (between the three subunits), thus allowing signal transmission by receptor clustering

    Intracellular detection of differential APOBEC3G, TRIM5alpha, and LEDGF/p75 protein expression in peripheral blood by flow cytometry

    No full text
    Expression studies on specific host proteins predominantly use quantitative PCR and western blotting assays. In this study, we optimized a flow cytometry-based assay to study intracellular expression levels of three important host proteins involved in HIV-1 replication: apolipoprotein B mRNA-editing catalytic polypeptide-like 3G (APOBEC3G), tripartite motif 5alpha (TRIM5alpha), and lens epithelium-derived growth factor (LEDGF/p75). An indirect intracellular staining (ICS) method was optimized using antibodies designed for other applications like enzyme-linked immunosorbent assay (ELISA), confocal imaging, and western blotting. The median fluorescence intensity (MFI) value - a measure for the protein expression level - increased upon higher antibody concentration and longer incubation time, and was reduced following preincubation with recombinant proteins. Staining of stably transfected or knock-down cell lines supported the method's specificity. Moreover, confocal microscopy analysis of peripheral blood mononuclear cells (PBMC), when stained according to the ICS method, confirmed the localization of APOBEC3G and TRIM5alpha in the cytoplasm, and of LEDGF/p75 in the nucleus. Also, stimulation with mitogen, interferon-alpha, or interferon-beta resulted in detectable, albeit weak, increases in intracellular expression of APOBEC3G and TRIM5alpha. After optimization, the method was applied to healthy control and HIV-1 infected subjects. For all subjects studied, the memory subset of CD4+ T cells showed significantly higher expression levels of APOBEC3G, TRIM5alpha, and LEDGF/p75, while the CD16+ subset of monocytes was characterized by higher expression levels of LEDGF/p75. In addition, we observed that therapy-naive HIV-1 patients tended to have lower expression levels of APOBEC3G and TRIM5alpha than HIV-1 negative controls. In summary, our data provide proof-of-principle for the detection of specific host factors at the level of a single cell, which may prove useful for our further understanding of their role in virus-host interactions
    corecore