68 research outputs found

    Lunar science from lunar laser ranging

    Get PDF
    Seventeen years of lunar ranging data have been analyzed to determine lunar second-degree moment differences, third-degree gravitational harmonics, Love number, rotational dissipation and retroreflector coordinates

    JPL Development Ephemeris number 96

    Get PDF
    The fourth issue of JPL Planetary Ephemerides, designated JPL Development Ephemeris No. 96 (DE96), is described. This ephemeris replaces a previous issue which has become obsolete since its release in 1969. Improvements in this issue include more recent and more accurate observational data, new types of data, better processing of the data, and refined equations of motion which more accurately describe the actual physics of the solar system. The descriptions in this report include these new features as well as the new export version of the ephemeris. The tapes and requisite software will be distributed through the NASA Computer Software Management and Information Center (COSMIC) at the University of Georgia

    On the Dynamical Stability of the Solar System

    Get PDF
    A long-term numerical integration of the classical Newtonian approximation to the planetary orbital motions of the full Solar System (sun + 8 planets), spanning 20 Gyr, was performed. The results showed no severe instability arising over this time interval. Subsequently, utilizing a bifurcation method described by Jacques Laskar, two numerical experiments were performed with the goal of determining dynamically allowed evolutions for the Solar System in which the planetary orbits become unstable. The experiments yielded one evolution in which Mercury falls onto the Sun at ~1.261Gyr from now, and another in which Mercury and Venus collide in ~862Myr. In the latter solution, as a result of Mercury's unstable behavior, Mars was ejected from the Solar System at ~822Myr. We have performed a number of numerical tests that confirm these results, and indicate that they are not numerical artifacts. Using synthetic secular perturbation theory, we find that Mercury is destabilized via an entrance into a linear secular resonance with Jupiter in which their corresponding eigenfrequencies experience extended periods of commensurability. The effects of general relativity on the dynamical stability are discussed. An application of the bifurcation method to the outer Solar System (Jupiter, Saturn, Uranus, and Neptune) showed no sign of instability during the course of 24Gyr of integrations, in keeping with an expected Uranian dynamical lifetime of 10^(18) years.Comment: 37 pages, 18 figures, accepted for publication in the Astrophysical Journa

    Three-Body Dynamics with Gravitational Wave Emission

    Full text link
    We present numerical three-body experiments that include the effects of gravitational radiation reaction by using equations of motion that include the 2.5-order post-Newtonian force terms, which are the leading order terms of energy loss from gravitational waves. We simulate binary-single interactions and show that close approach cross sections for three 1 solar mass objects are unchanged from the purely Newtonian dynamics except for close approaches smaller than 1.0e-5 times the initial semimajor axis of the binary. We also present cross sections for mergers resulting from gravitational radiation during three-body encounters for a range of binary semimajor axes and mass ratios including those of interest for intermediate-mass black holes (IMBHs). Building on previous work, we simulate sequences of high-mass-ratio three-body encounters that include the effects of gravitational radiation. The simulations show that the binaries merge with extremely high eccentricity such that when the gravitational waves are detectable by LISA, most of the binaries will have eccentricities e > 0.9 though all will have circularized by the time they are detectable by LIGO. We also investigate the implications for the formation and growth of IMBHs and find that the inclusion of gravitational waves during the encounter results in roughly half as many black holes ejected from the host cluster for each black hole accreted onto the growing IMBH.Comment: 34 pages, 14 figures, minor corrections to match version accepted by Ap

    Improving LLR Tests of Gravitational Theory

    Full text link
    Accurate analysis of precision ranges to the Moon has provided several tests of gravitational theory including the Equivalence Principle, geodetic precession, parameterized post-Newtonian (PPN) parameters Îł\gamma and ÎČ\beta, and the constancy of the gravitational constant {\it G}. Since the beginning of the experiment in 1969, the uncertainties of these tests have decreased considerably as data accuracies have improved and data time span has lengthened. We are exploring the modeling improvements necessary to proceed from cm to mm range accuracies enabled by the new Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) currently under development in New Mexico. This facility will be able to make a significant contribution to the solar system tests of fundamental and gravitational physics. In particular, the Weak and Strong Equivalence Principle tests would have a sensitivity approaching 10−14^{-14}, yielding sensitivity for the SEP violation parameter η\eta of ∌3×10−5\sim 3\times 10^{-5}, v2/c2v^2/c^2 general relativistic effects would be tested to better than 0.1%, and measurements of the relative change in the gravitational constant, G˙/G\dot{G}/G, would be ∌0.1\sim0.1% the inverse age of the universe. Having this expected accuracy in mind, we discusses the current techniques, methods and existing physical models used to process the LLR data. We also identify the challenges for modeling and data analysis that the LLR community faces today in order to take full advantage of the new APOLLO ranging station.Comment: 15 pages, 3 figures, talk presented at 2003 NASA/JPL Workshop on Fundamental Physics in Space, April 14-16, 2003, Oxnard, C

    Equations of motion according to the asymptotic post-Newtonian scheme for general relativity in the harmonic gauge

    Full text link
    The asymptotic scheme of post-Newtonian approximation defined for general relativity (GR) in the harmonic gauge by Futamase & Schutz (1983) is based on a family of initial data for the matter fields of a perfect fluid and for the initial metric, defining a family of weakly self-gravitating systems. We show that Weinberg's (1972) expansion of the metric and his general expansion of the energy-momentum tensor T{\bf T}, as well as his expanded equations for the gravitational field and his general form of the expanded dynamical equations, apply naturally to this family. Then, following the asymptotic scheme, we derive the explicit form of the expansion of T{\bf T} for a perfect fluid, and the expanded fluid-dynamical equations. (These differ from those written by Weinberg.) By integrating these equations in the domain occupied by a body, we obtain a general form of the translational equations of motion for a 1PN perfect-fluid system in GR. To put them into a tractable form, we use an asymptotic framework for the separation parameter η\eta , by defining a family of well-separated 1PN systems. We calculate all terms in the equations of motion up to the order η3\eta ^3 included. To calculate the 1PN correction part, we assume that the Newtonian motion of each body is a rigid one, and that the family is quasi-spherical, in the sense that in all bodies the inertia tensor comes close to being spherical as η→0\eta \to 0. Apart from corrections that cancel for exact spherical symmetry, there is in the final equations of motion one additional term, as compared with the Lorentz-Droste (Einstein-Infeld-Hoffmann) acceleration. This term depends on the spin of the body and on its internal structure.Comment: 42 pages, no figure. Version accepted for publication in Physical Review

    Radioscience simulations in General Relativity and in alternative theories of gravity

    Full text link
    In this communication, we focus on the possibility to test GR with radioscience experiments. We present a new software that in a first step simulates the Range/Doppler signals directly from the space time metric (thus in GR and in alternative theories of gravity). In a second step, a least-squares fit of the involved parameters is performed in GR. This software allows one to get the order of magnitude and the signature of the modifications induced by an alternative theory of gravity on radioscience signals. As examples, we present some simulations for the Cassini mission in Post-Einsteinian gravity and with the MOND External Field Effect.Comment: 4 pages; Proceedings of "Les Rencontres de Moriond 2011 - Gravitation session

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Classical tests in brane gravity

    Full text link
    The vacuum solutions in brane gravity differ from those in 4D by a number of additional terms and reduce to the familiar Schwarzschild metric at small distances. We study the possible roles that such terms may play in the precession of planetary orbits, bending of light, radar retardation and the anomaly in mean motion of test bodies. Using the available data from Solar System experiments, we determine the range of the free parameters associated with the linear term in the metric. The best results come from the anomalies in the mean motion of planets. Such studies should shed some light on the origin of dark energy via the solar system tests.Comment: 10 pages, no figures, to appear in CQ
    • 

    corecore