29,894 research outputs found

    Visualizing urban microclimate and quantifying its impact on building energy use in San Francisco

    Get PDF
    Weather data at nearby airports are usually used in building energy simulation to estimate energy use in buildings or evaluate building design or retrofit options. However, due to urbanization and geography characteristics, local weather conditions can differ significantly from those at airports. This study presents the visualization of 10-year hourly weather data measured at 27 sites in San Francisco, aiming to provide insights into the urban microclimate and urban heat island effect in San Francisco and how they evolve during the recent decade. The 10-year weather data are used in building energy simulations to investigate its influence on energy use and electrical peak demand, which informs the city's policy making on building energy efficiency and resilience. The visualization feature is implemented in CityBES, an open web-based data and computing platform for urban building energy research

    Evidence for spin-flip scattering and local moments in dilute fluorinated graphene

    Full text link
    The issue of whether local magnetic moments can be formed by introducing adatoms into graphene is of intense research interest because it opens the window to fundamental studies of magnetism in graphene, as well as of its potential spintronics applications. To investigate this question we measure, by exploiting the well-established weak localization physics, the phase coherence length L_phi in dilute fluorinated graphene. L_phi reveals an unusual saturation below ~ 10 K, which cannot be explained by non-magnetic origins. The corresponding phase breaking rate increases with decreasing carrier density and increases with increasing fluorine density. These results provide strong evidence for spin-flip scattering and points to the existence of adatom-induced local magnetic moment in fluorinated graphene. Our results will stimulate further investigations of magnetism and spintronics applications in adatom-engineered graphene.Comment: 9 pages, 4 figures, and supplementary materials; Phys. Rev. Lett. in pres

    Effective mass of electrons and holes in bilayer graphene: Electron-hole asymmetry and electron-electron interaction

    Get PDF
    Precision measurements of the effective mass m* in high-quality bilayer graphene using the temperature dependence of the Shubnikov–de Haas oscillations are reported. In the density range 0.7 × 1012 \u3c n \u3c 4.1 × 1012 cm−2, both the hole mass m*h and the electron mass m*e increase with increasing density, demonstrating the hyperbolic nature of the bands. The hole mass m*h is approximately 20–30% larger than the electron mass m*e . Tight-binding calculations provide a good description of the electron-hole asymmetry and yield an accurate measure of the interlayer hopping parameter v4 = 0.063. Both m*h and m*e are suppressed compared with single particle values, suggesting renormalization of the band structure of bilayer graphene induced by electron-electron interaction

    The quantum scattering time and its implications on scattering sources in graphene (Supplementary)

    Get PDF
    Supplementary Information Content: 1. Sample preparation; 2. Background subtraction of Shubnikov-de Haas (SdH) oscillations; 3. The effect of density inhomogeneity on the quantum scattering time tau_q; 4. Determine the concentration of charged impurity n_imp at a distance z; 5. Scattering from charges in the bulk of the SiO_2 substrate.Comment: Supplementary materials to arXiv:0909.1595. 5 pages, 5 figure

    Effective mass of electrons and holes in bilayer graphene: Electron-hole asymmetry and electron-electron interaction

    Get PDF
    Precision measurements of the effective mass m* in high-quality bilayer graphene using the temperature dependence of the Shubnikov–de Haas oscillations are reported. In the density range 0.7 × 1012 \u3c n \u3c 4.1 × 1012 cm−2, both the hole mass m*h and the electron mass m*e increase with increasing density, demonstrating the hyperbolic nature of the bands. The hole mass m*h is approximately 20–30% larger than the electron mass m*e . Tight-binding calculations provide a good description of the electron-hole asymmetry and yield an accurate measure of the interlayer hopping parameter v4 = 0.063. Both m*h and m*e are suppressed compared with single particle values, suggesting renormalization of the band structure of bilayer graphene induced by electron-electron interaction

    High-Mobility Few-Layer Graphene Field Effect Transistors Fabricated on Epitaxial Ferroelectric Gate Oxides

    Get PDF
    The carrier mobility \mu of few-layer graphene (FLG) field-effect transistors increases ten-fold when the SiO_2 substrate is replaced by single-crystal epitaxial Pb(Zr_0.2Ti_0.8)O_3 (PZT). In the electron-only regime of the FLG, \mu reaches 7x10^4 cm^2/Vs at 300K for n = 2.4x10^12/cm^2, 70% of the intrinsic limit set by longitudinal acoustic (LA) phonons; it increases to 1.4x10^5 cm^2/Vs at low temperature. The temperature-dependent resistivity \rho(T) reveals a clear signature of LA phonon scattering, yielding a deformation potential D = 7.8+/-0.5 eV.Comment: 5 pages, 4 figure

    The signal of Z±(4430)Z^\pm(4430) in nucleon-antinucleon scattering

    Full text link
    We study the production of Z±(4430)Z^\pm(4430) at a nucleon-antinucleon scattering experiment. Considering the PANDA experiment to be an ideal platform to explore the production of the charmonium and charmonim-like states, we suggest the forthcoming PANDA experiment to pay attention to the production of Z±(4430)Z^\pm(4430).Comment: 6 pages, 15 figures. Published version in EPJ
    • …
    corecore