17,080 research outputs found

    In an Attempt to Introduce Long-range Interactions into Small-world Networks

    Full text link
    Distinguishing the long-range bonds with the regular ones, the critical temperature of the spin-lattice Guassian model built on two typical Small-world Networks (SWNs) is studied. The results show much difference from the classical case, and thus may induce some more accurate discussion on the critical properties of the spin-lattice systems combined with the SWNs.Comment: 4 pages, 3 figures, 18 referenc

    On the "Security analysis and improvements of arbitrated quantum signature schemes"

    Full text link
    Recently, Zou et al. [Phys. Rev. A 82, 042325 (2010)] pointed out that two arbitrated quantum signature (AQS) schemes are not secure, because an arbitrator cannot arbitrate the dispute between two users when a receiver repudiates the integrity of a signature. By using a public board, they try to propose two AQS schemes to solve the problem. This work shows that the same security problem may exist in their schemes and also a malicious party can reveal the other party's secret key without being detected by using the Trojan-horse attacks. Accordingly, two basic properties of a quantum signature, i.e. unforgeability and undeniability, may not be satisfied in their scheme

    Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces

    Get PDF
    ©2003 The American Physical Society. The electronic version of this article is the complete one and can be found online at: http://link.aps.org/doi/10.1103/PhysRevLett.91.185502DOI: 10.1103/PhysRevLett.91.185502We report that the Zn-terminated ZnO (0001) polar surface is chemically active and the oxygenterminated (0001) polar surface is inert in the growth of nanocantilever arrays. Longer and wider "comblike" nanocantilever arrays are grown from the (0001)-Zn surface, which is suggested to be a self-catalyzed process due to the enrichment of Zn at the growth front. The chemically inactive (0001)-O surface typically does not initiate any growth, but controlling experimental conditions could lead to the growth of shorter and narrower nanocantilevers from the intersections between (0001)-O with (0110) surfaces

    Time-Periodic Solutions of the Einstein's Field Equations II

    Full text link
    In this paper, we construct several kinds of new time-periodic solutions of the vacuum Einstein's field equations whose Riemann curvature tensors vanish, keep finite or take the infinity at some points in these space-times, respectively. The singularities of these new time-periodic solutions are investigated and some new physical phenomena are found. The applications of these solutions in modern cosmology and general relativity can be expected.Comment: 10 pages, 1 figur

    Valosin-containing protein regulates the proteasome-mediated degradation of DNA-PKcs in glioma cells.

    Get PDF
    DNA-dependent protein kinase (DNA-PK) has an important role in the repair of DNA damage and regulates the radiation sensitivity of glioblastoma cells. The VCP (valosine-containing protein), a chaperone protein that regulates ubiquitin-dependent protein degradation, is phosphorylated by DNA-PK and recruited to DNA double-strand break sites to regulate DNA damage repair. However, it is not clear whether VCP is involved in DNA-PKcs (DNA-PK catalytic subunit) degradation or whether it regulates the radiosensitivity of glioblastoma. Our data demonstrated that DNA-PKcs was ubiquitinated and bound to VCP. VCP knockdown resulted in the accumulation of the DNA-PKcs protein in glioblastoma cells, and the proteasome inhibitor MG132 synergised this increase. As expected, this increase promoted the efficiency of DNA repair in several glioblastoma cell lines; in turn, this enhanced activity decreased the radiation sensitivity and prolonged the survival fraction of glioblastoma cells in vitro. Moreover, the VCP knockdown in glioblastoma cells reduced the survival time of the xenografted mice with radiation treatment relative to the control xenografted glioblastoma mice. In addition, the VCP protein was also downregulated in ~25% of GBM tissues from patients (WHO, grade IV astrocytoma), and the VCP protein level was correlated with patient survival (R(2)=0.5222, P<0.05). These findings demonstrated that VCP regulates DNA-PKcs degradation and increases the sensitivity of GBM cells to radiation

    The Properties of H{\alpha} Emission-Line Galaxies at z = 2.24

    Full text link
    Using deep narrow-band H2S1H_2S1 and KsK_{s}-band imaging data obtained with CFHT/WIRCam, we identify a sample of 56 Hα\alpha emission-line galaxies (ELGs) at z=2.24z=2.24 with the 5σ\sigma depths of H2S1=22.8H_2S1=22.8 and Ks=24.8K_{s}=24.8 (AB) over 383 arcmin2^{2} area in the ECDFS. A detailed analysis is carried out with existing multi-wavelength data in this field. Three of the 56 Hα\alpha ELGs are detected in Chandra 4 Ms X-ray observation and two of them are classified as AGNs. The rest-frame UV and optical morphologies revealed by HST/ACS and WFC3 deep images show that nearly half of the Hα\alpha ELGs are either merging systems or with a close companion, indicating that the merging/interacting processes play a key role in regulating star formation at cosmic epoch z=2-3; About 14% are too faint to be resolved in the rest-frame UV morphology due to high dust extinction. We estimate dust extinction from SEDs. We find that dust extinction is generally correlated with Hα\alpha luminosity and stellar mass (SM). Our results suggest that Hα\alpha ELGs are representative of star-forming galaxies (SFGs). Applying extinction correction for individual objects, we examine the intrinsic Hα\alpha luminosity function (LF) at z=2.24z=2.24, obtaining a best-fit Schechter function characterized by a faint-end slope of α=1.3\alpha=-1.3. This is shallower than the typical slope of α1.6\alpha \sim -1.6 in previous works based on constant extinction correction. We demonstrate that this difference is mainly due to the different extinction corrections. The proper extinction correction is thus key to recovering the intrinsic LF as the extinction globally increases with Hα\alpha luminosity. Moreover, we find that our Hα\alpha LF mirrors the SM function of SFGs at the same cosmic epoch. This finding indeed reflects the tight correlation between SFR and SM for the SFGs, i.e., the so-called main sequence.Comment: 15 pages, 12 figures, 2 tables, Received 2013 October 11; accepted 2014 February 13; published 2014 March 18 by Ap

    Evolution equations of curvature tensors along the hyperbolic geometric flow

    Full text link
    We consider the hyperbolic geometric flow 2t2g(t)=2Ricg(t)\frac{\partial^2}{\partial t^2}g(t)=-2Ric_{g(t)} introduced by Kong and Liu [KL]. When the Riemannian metric evolve, then so does its curvature. Using the techniques and ideas of S.Brendle [Br,BS], we derive evolution equations for the Levi-Civita connection and the curvature tensors along the hyperbolic geometric flow. The method and results are computed and written in global tensor form, different from the local normal coordinate method in [DKL1]. In addition, we further show that any solution to the hyperbolic geometric flow that develops a singularity in finite time has unbounded Ricci curvature.Comment: 15 page

    TMBF: Bloom filter algorithms of time-dependent multi bit-strings for incremental set

    Get PDF
    Set is widely used as a kind of basic data structure. However, when it is used for large scale data set the cost of storage, search and transport is overhead. The bloom filter uses a fixed size bit string to represent elements in a static set, which can reduce storage space and search cost that is a fixed constant. The time-space efficiency is achieved at the cost of a small probability of false positive in membership query. However, for many applications the space savings and locating time constantly outweigh this drawback. Dynamic bloom filter (DBF) can support concisely representation and approximate membership queries of dynamic set instead of static set. It has been proved that DBF not only possess the advantage of standard bloom filter, but also has better features when dealing with dynamic set. This paper proposes a time-dependent multiple bit-strings bloom filter (TMBF) which roots in the DBF and targets on dynamic incremental set. TMBF uses multiple bit-strings in time order to present a dynamic increasing set and uses backward searching to test whether an element is in a set. Based on the system logs from a real P2P file sharing system, the evaluation shows a 20% reduction in searching cost compared to DBF
    corecore