589 research outputs found

    Study of flavour dependencies in leptogenesis

    Full text link
    We study the impact of flavours on the efficiency factors and give analytical and numerical results of the baryon asymmetry taking into account the different charged lepton Yukawa contributions and the complete (diagonal and off-diagonal) LL to BLB-L conversion AA matrix. With this treatment we update the lower bound on the lightest right-handed neutrino mass.Comment: 13 pages, 11 figures. typos corrected, some formulae modified. 2 figures and discussion adde

    Solving the Darwin problem in the first post-Newtonian approximation of general relativity

    Get PDF
    We analytically calculate the equilibrium sequence of the corotating binary stars of incompressible fluid in the first post-Newtonian(PN) approximation of general relativity. By calculating the total energy and total angular momentum of the system as a function of the orbital separation, we investigate the innermost stable circular orbit for corotating binary(we call it ISCCO). It is found that by the first PN effect, the orbital separation of the binary at the ISCCO becomes small with increase of the compactness of each star, and as a result, the orbital angular velocity at the ISCCO increases. These behaviors agree with previous numerical works.Comment: 33 pages, revtex, 4 figures(eps), accepted for publication in Phys. Rev.

    Semi-supervised Learning based on Distributionally Robust Optimization

    Full text link
    We propose a novel method for semi-supervised learning (SSL) based on data-driven distributionally robust optimization (DRO) using optimal transport metrics. Our proposed method enhances generalization error by using the unlabeled data to restrict the support of the worst case distribution in our DRO formulation. We enable the implementation of our DRO formulation by proposing a stochastic gradient descent algorithm which allows to easily implement the training procedure. We demonstrate that our Semi-supervised DRO method is able to improve the generalization error over natural supervised procedures and state-of-the-art SSL estimators. Finally, we include a discussion on the large sample behavior of the optimal uncertainty region in the DRO formulation. Our discussion exposes important aspects such as the role of dimension reduction in SSL

    A Static Analyzer for Large Safety-Critical Software

    Get PDF
    We show that abstract interpretation-based static program analysis can be made efficient and precise enough to formally verify a class of properties for a family of large programs with few or no false alarms. This is achieved by refinement of a general purpose static analyzer and later adaptation to particular programs of the family by the end-user through parametrization. This is applied to the proof of soundness of data manipulation operations at the machine level for periodic synchronous safety critical embedded software. The main novelties are the design principle of static analyzers by refinement and adaptation through parametrization, the symbolic manipulation of expressions to improve the precision of abstract transfer functions, the octagon, ellipsoid, and decision tree abstract domains, all with sound handling of rounding errors in floating point computations, widening strategies (with thresholds, delayed) and the automatic determination of the parameters (parametrized packing)

    Gravitational radiation from corotating binary neutron stars of incompressible fluid in the first post-Newtonian approximation of general relativity

    Get PDF
    We analytically study gravitational radiation from corotating binary neutron stars composed of incompressible, homogeneous fluid in circular orbits. The energy and the angular momentum loss rates are derived up to the first post-Newtonian (1PN) order beyond the quadrupole approximation including effects of the finite size of each star of binary. It is found that the leading term of finite size effects in the 1PN order is only O(GM/c2a)O(GM_{\ast}/c^2 a_{\ast}) smaller than that in the Newtonian order, where GM/c2aGM_{\ast}/c^2 a_{\ast} means the ratio of the gravitational radius to the mean radius of each star of binary, and the 1PN term acts to decrease the Newtonian finite size effect in gravitational radiation.Comment: 26 pages, revtex, 9 figures(eps), accepted for publication in Phys. Rev.

    Gravitational Radiation from Triple Star Systems

    Get PDF
    We have studied the main features of the gravitational radiation generated by an astrophysical system constituted of three compact objects attracting one another (only via gravitational interaction) in such a manner that stable orbits do exist. We have limited our analysis to systems that can be treated with perturbative methods. We show the profile of the gravitational waves emitted by such systems. These results can be useful within the framework of the new gravitational astronomy which will be made feasible by means of the new generation of gravitational detectors such as LISA in a no longer far future.Comment: 10 pages plus 9 postscript figures; revtex; accepted for publication in Int. J. Mod. Phys.

    Equations of motion according to the asymptotic post-Newtonian scheme for general relativity in the harmonic gauge

    Full text link
    The asymptotic scheme of post-Newtonian approximation defined for general relativity (GR) in the harmonic gauge by Futamase & Schutz (1983) is based on a family of initial data for the matter fields of a perfect fluid and for the initial metric, defining a family of weakly self-gravitating systems. We show that Weinberg's (1972) expansion of the metric and his general expansion of the energy-momentum tensor T{\bf T}, as well as his expanded equations for the gravitational field and his general form of the expanded dynamical equations, apply naturally to this family. Then, following the asymptotic scheme, we derive the explicit form of the expansion of T{\bf T} for a perfect fluid, and the expanded fluid-dynamical equations. (These differ from those written by Weinberg.) By integrating these equations in the domain occupied by a body, we obtain a general form of the translational equations of motion for a 1PN perfect-fluid system in GR. To put them into a tractable form, we use an asymptotic framework for the separation parameter η\eta , by defining a family of well-separated 1PN systems. We calculate all terms in the equations of motion up to the order η3\eta ^3 included. To calculate the 1PN correction part, we assume that the Newtonian motion of each body is a rigid one, and that the family is quasi-spherical, in the sense that in all bodies the inertia tensor comes close to being spherical as η0\eta \to 0. Apart from corrections that cancel for exact spherical symmetry, there is in the final equations of motion one additional term, as compared with the Lorentz-Droste (Einstein-Infeld-Hoffmann) acceleration. This term depends on the spin of the body and on its internal structure.Comment: 42 pages, no figure. Version accepted for publication in Physical Review

    Innermost Stable Circular Orbit of Inspiraling Neutron-Star Binaries: Tidal Effects, Post-Newtonian Effects and the Neutron-Star Equation of State

    Get PDF
    We study how the neutron-star equation of state affects the onset of the dynamical instability in the equations of motion for inspiraling neutron-star binaries near coalescence. A combination of relativistic effects and Newtonian tidal effects cause the stars to begin their final, rapid, and dynamically-unstable plunge to merger when the stars are still well separated and the orbital frequency is \approx 500 cycles/sec (i.e. the gravitational wave frequency is approximately 1000 Hz). The orbital frequency at which the dynamical instability occurs (i.e. the orbital frequency at the innermost stable circular orbit) shows modest sensitivity to the neutron-star equation of state (particularly the mass-radius ratio, M/RoM/R_o, of the stars). This suggests that information about the equation of state of nuclear matter is encoded in the gravitational waves emitted just prior to the merger.Comment: RevTeX, to appear in PRD, 8 pages, 4 figures include

    The see-saw mechanism: neutrino mixing, leptogenesis and lepton flavor violation

    Get PDF
    The see-saw mechanism to generate small neutrino masses is reviewed. After summarizing our current knowledge about the low energy neutrino mass matrix we consider reconstructing the see-saw mechanism. Low energy neutrino physics is not sufficient to reconstruct see-saw, a feature which we refer to as ``see-saw degeneracy''. Indirect tests of see-saw are leptogenesis and lepton flavor violation in supersymmetric scenarios, which together with neutrino mass and mixing define the framework of see-saw phenomenology. Several examples are given, both phenomenological and GUT-related. Variants of the see-saw mechanism like the type II or triplet see-saw are also discussed. In particular, we compare many general aspects regarding the dependence of LFV on low energy neutrino parameters in the extreme cases of a dominating conventional see-saw term or a dominating triplet term. For instance, the absence of mu -> e gamma or tau -> e gamma in the pure triplet case means that CP is conserved in neutrino oscillations. Scanning models, we also find that among the decays mu -> e gamma, tau -> e gamma and tau -> mu gamma the latter one has the largest branching ratio in (i) SO(10) type I see-saw models and in (ii) scenarios in which the triplet term dominates in the neutrino mass matrix.Comment: 26 pages, 7 figures. Expanded version of talk given at 10th Workshop In High Energy Physics Phenomenology (WHEPP 10), January 2008, Chennai, India. Typos corrected, comments and references adde
    corecore