12,630 research outputs found

    A magnetar-powered X-ray transient as the aftermath of a binary neutron-star merger

    Get PDF
    Neutron star-neutron star mergers are known to be associated with short gamma-ray bursts. If the neutron star equation of state is sufficiently stiff, at least some of such mergers will leave behind a supramassive or even a stable neutron star that spins rapidly with a strong magnetic field (i.e., a magnetar). Such a magnetar signature may have been observed as the X-ray plateau following a good fraction (up to 50%) of short gamma-ray bursts, and it has been expected that one may observe short gamma-ray burst-less X-ray transients powered by double neutron star mergers. A fast X-ray transient (CDF-S XT1) was recently found to be associated with a faint host galaxy whose redshift is unknown. Its X-ray and host-galaxy properties allow several possibleexplanations including a short gamma-ray burst seen off axis, a low-luminosity gamma-ray burst at high redshift, or a tidal disruption event involving an intermediate mass black hole and a white dwarf. Here we report a second X-ray transient, CDF-S XT2, that is associated with a galaxy at redshift z = 0.738. The light curve is fully consistent with being powered by a millisecond magnetar. More intriguingly, CDF-S XT2 lies in the outskirts of its star-forming host galaxy with a moderate offset from the galaxy center, as short bursts often do. The estimated event rate density of similar X-ray transients, when corrected to the local value, is consistent with the double neutron star merger rate density inferred from the detection of GW170817.Comment: 29 pages, 4 figures, 3 tables, published in Nature on 11 April 201

    Who is energy poor? Evidence from the least developed regions in China

    Get PDF
    Energy poverty has become one of the major challenges faced by the world's energy system. However, there is no consensus on the measure of energy poverty. Several approaches have been proposed, among which the energy poverty line has been defined as the minimum quantity of energy required for basic life, particularly for cooking and heating. This paper estimates the relationship between energy expenditure and household income and identifies the energy poverty line based on the threshold above which the energy share becomes insensitive to household income using household survey data from rural Qinghai, China. Considering the ongoing energy transition and the negative impacts of biomass energy consumption for the environment and health, the study sets a scenario in which all bioenergy consumption is replaced with electricity. The findings show that 57% of rural households in rural Qinghai are energy poor. The phase of energy poverty in terms of basic energy access has passed, so increasing the share of efficient modern energy in household energy consumption requires more attention. Considering the existence of a population that is not income poor but is energy poor, a conventional policy design that primarily targets income-poor households may be inappropriate in this case

    Cooling a Micromechanical Beam by Coupling it to a Transmission Line

    Full text link
    We study a method to cool down the vibration mode of a micro-mechanical beam using a capacitively-coupled superconducting transmission line. The Coulomb force between the transmission line and the beam is determined by the driving microwave on the transmission line and the displacement of the beam. When the frequency of the driving microwave is smaller than that of the transmission line resonator, the Coulomb force can oppose the velocity of the beam. Thus, the beam can be cooled. This mechanism, which may enable to prepare the beam in its quantum ground state of vibration, is feasible under current experimental conditions.Comment: 6 pages, 4 figure

    Variability-selected low-luminosity active galactic nuclei candidates in the 7 Ms Chandra Deep Field-South

    Get PDF
    In deep X-ray surveys, active galactic nuclei (AGNs) with a broad range of luminosities have been identified. However, cosmologically distant low-luminosity AGN (LLAGN, LX≲1042L_{\mathrm{X}} \lesssim 10^{42} erg s−1^{-1}) identification still poses a challenge due to significant contamination from host galaxies. Based on the 7 Ms Chandra Deep Field-South (CDF-S) survey, the longest timescale (∼17\sim 17 years) deep X-ray survey to date, we utilize an X-ray variability selection technique to search for LLAGNs that remain unidentified among the CDF-S X-ray sources. We find 13 variable sources from 110 unclassified CDF-S X-ray sources. Except for one source which could be an ultraluminous X-ray source, the variability of the remaining 12 sources is most likely due to accreting supermassive black holes. These 12 AGN candidates have low intrinsic X-ray luminosities, with a median value of 7×10407 \times10^{40} erg s−1^{-1}. They are generally not heavily obscured, with an average effective power-law photon index of 1.8. The fraction of variable AGNs in the CDF-S is independent of X-ray luminosity and is only restricted by the total number of observed net counts, confirming previous findings that X-ray variability is a near-ubiquitous property of AGNs over a wide range of luminosities. There is an anti-correlation between X-ray luminosity and variability amplitude for high-luminosity AGNs, but as the luminosity drops to ≲1042\lesssim 10^{42} erg s−1^{-1}, the variability amplitude no longer appears dependent on the luminosity. The entire observed luminosity-variability trend can be roughly reproduced by an empirical AGN variability model based on a broken power-law power spectral density function.Comment: 18 pages, 11 figures, accepted for publication in Ap
    • …
    corecore