2,833 research outputs found

    Dichotomous Hamiltonians with Unbounded Entries and Solutions of Riccati Equations

    Full text link
    An operator Riccati equation from systems theory is considered in the case that all entries of the associated Hamiltonian are unbounded. Using a certain dichotomy property of the Hamiltonian and its symmetry with respect to two different indefinite inner products, we prove the existence of nonnegative and nonpositive solutions of the Riccati equation. Moreover, conditions for the boundedness and uniqueness of these solutions are established.Comment: 31 pages, 3 figures; proof of uniqueness of solutions added; to appear in Journal of Evolution Equation

    Averaging techniques for steady and unsteady calculations of a transonic fan stage

    Get PDF
    It is often desirable to characterize a turbomachinery flow field with a few lumped parameters such as total pressure ratio or stage efficiency. Various averaging schemes may be used to compute these parameters. The momentum, energy, and area averaging schemes are described and compared. The schemes were compared for two computed solutions of the midspan section of a transonic fan stage: a steady averaging-plane solution in which average rotor outflow conditions were used as stator inflow conditions, and an unsteady rotor-stator interaction solution. The solutions were computed on identical grids using similar Navier-Stokes codes and an algebraic turbulence model. The unsteady solution is described, some unsteady flow phenomena are discussed, and the steady pressure distributions are compared. Despite large unsteady pressure fluctuations on the stator surface, the steady pressure distribution matched the average unsteady distribution almost exactly. Stator wake profiles, stator loss coefficient, and stage efficiency were computed for the two solutions with the three averaging schemes and are compared. In general, the energy averaging scheme gave good agreement between the averaging-plane solution and the time-averaged unsteady solution, even though certain phenomena due to unsteady wake migration were neglected

    IL-2-Mediated In Vivo Expansion of Regulatory T Cells Combined with CD154-CD40 Co-Stimulation Blockade but Not CTLA-4 Ig Prolongs Allograft Survival in Naive and Sensitized Mice.

    Get PDF
    In recent years, regulatory T cells (Treg)-based immunotherapy has emerged as a promising strategy to promote operational tolerance after solid organ transplantation (SOT). However, a main hurdle for the therapeutic use of Treg in transplantation is their low frequency, particularly in non-lymphopenic hosts. We aimed to expand Treg directly in vivo and determine their efficacy in promoting donor-specific tolerance, using a stringent experimental model. Administration of the IL-2/JES6-1 immune complex at the time of transplantation resulted in significant expansion of donor-specific Treg, which suppressed alloreactive T cells. IL-2-mediated Treg expansion in combination with short-term CD154-CD40 co-stimulation blockade, but not CTLA-4 Ig or rapamycin, led to tolerance to MHC-mismatched skin grafts in non-lymphopenic mice, mainly by hindering alloreactive CD8(+) effector T cells and the production of alloantibodies. Importantly, this treatment also allowed prolonged survival of allografts in the presence of either donor-specific or cross-reactive memory cells. However, late rejection occurred in sensitized hosts, partly mediated by activated B cells. Overall, these data illustrate the potential but also some important limitations of Treg-based therapy in clinical SOT as well as the importance of concomitant immunomodulatory strategies in particular in sensitized hosts

    Far-infrared induced current in a ballistic channel -- potential barrier structure

    Full text link
    We consider electron transport in a ballistic multi-mode channel structure in the presence of a transversely polarized far-infrared (FIR) field. The channel structure consists of a long resonance region connected to an adiabatic widening with a potential barrier at the end. At frequencies that match the mode energy separation in the resonance region we find distinct peaks in the photocurrent, caused by Rabi oscillations in the mode population. For an experimental situation in which the width of the channel is tunable via gates, we propose a method for reconstructing the spectrum of propagating modes, without having to use a tunable FIR source. With this method the change in the spectrum as the gate voltage is varied can be monitored.Comment: Submitted to Phys. Rev.

    Shape and blocking effects on odd-even mass differences and rotational motion of nuclei

    Get PDF
    Nuclear shapes and odd-nucleon blockings strongly influence the odd-even differences of nuclear masses. When such effects are taken into account, the determination of the pairing strength is modified resulting in larger pair gaps. The modified pairing strength leads to an improved self-consistent description of moments of inertia and backbending frequencies, with no additional parameters.Comment: 7 pages, 3 figures, subm to PR

    An alternative SNR-based weighted-LSM algorithm to classify and measure the concentration of Biological Agents from Laser-Induced Fluorescence

    Get PDF
    Optical spectroscopic techniques, such as Laser-Induced Breakdown Spectroscopy (LIBS) or Laser-Induced Fluorescence (LIF), have already been used to study and detect Biological Agents (BAs). Unfortunately, BAs usually share similar-shaped emitted spectra and low-signal intensities, making their detection and classification difficult to assess. Least-Square Minimisation (LSM) based algorithms are usually deployed to measure the concentration of agents from spectra. Recently, it has been shown how the use of ad hoc weights can help in improving the performance of the concentration evaluation. More specifically, it has been observed that the “weight matrix” should be modelled as a function of the boundary conditions of the problem. This work proposes a new weight matrix that is based on the Signal-to-Noise Ratio (SNR) of the measurements. The idea is based on the fact that more noisy data are less reliable and therefore weight should be lowered. The paper, after a brief introduction and review of the LSM applied to spectra, will show the new methodology. A systematic analysis of the new algorithm is done and the comparison with the other LSM algorithms is presented. The results clearly show that there is a range of parameters for which the new algorithm performs better

    Competition of different coupling schemes in atomic nuclei

    Full text link
    Shell model calculations reveal that the ground and low-lying yrast states of the N=ZN=Z nuclei 4692^{92}_{46}Pd and 96^{96}Cd are mainly built upon isoscalar spin-aligned neutron-proton pairs each carrying the maximum angular momentum J=9 allowed by the shell 0g9/20g_{9/2} which is dominant in this nuclear region. This mode of excitation is unique in nuclei and indicates that the spin-aligned pair has to be considered as an essential building block in nuclear structure calculations. In this contribution we will discuss this neutron-proton pair coupling scheme in detail. In particular, we will explore the competition between the normal monopole pair coupling and the spin-aligned coupling schemes. Such a coupling may be useful in elucidating the structure properties of N=ZN=Z and neighboring nuclei.Comment: 10 pages, 7 figures, 1 table. Proceedings of the Conference on Advanced Many-Body and Statistical Methods in Mesoscopic Systems, Constanta, Romania, June 27th - July 2nd 2011. To appear in Journal of Physics: Conference Serie

    Imaging stray magnetic field of individual ferromagnetic nanotubes

    Get PDF
    We use a scanning nanometer-scale superconducting quantum interference device to map the stray magnetic field produced by individual ferromagnetic nanotubes (FNTs) as a function of applied magnetic field. The images are taken as each FNT is led through magnetic reversal and are compared with micromagnetic simulations, which correspond to specific magnetization configurations. In magnetic fields applied perpendicular to the FNT long axis, their magnetization appears to reverse through vortex states, i.e.\ configurations with vortex end domains or -- in the case of a sufficiently short FNT -- with a single global vortex. Geometrical imperfections in the samples and the resulting distortion of idealized mangetization configurations influence the measured stray-field patterns.Comment: 14 pages, 4 figure

    Lipoxin A₄ prevents the progression of de novo and established endometriosis in a mouse model by attenuating prostaglandin E₂ production and estrogen signaling.

    Get PDF
    Endometriosis, a leading cause of pelvic pain and infertility, is characterized by ectopic growth of endometrial-like tissue and affects approximately 176 million women worldwide. The pathophysiology involves inflammatory and angiogenic mediators as well as estrogen-mediated signaling and novel, improved therapeutics targeting these pathways are necessary. The aim of this study was to investigate mechanisms leading to the establishment and progression of endometriosis as well as the effect of local treatment with Lipoxin A4 (LXA₄), an anti-inflammatory and pro-resolving lipid mediator that we have recently characterized as an estrogen receptor agonist. LXA₄ treatment significantly reduced endometriotic lesion size and downregulated the pro-inflammatory cytokines IL-1β and IL-6, as well as the angiogenic factor VEGF. LXA₄ also inhibited COX-2 expression in both endometriotic lesions and peritoneal fluid cells, resulting in attenuated peritoneal fluid Prostaglandin E₂ (PGE₂) levels. Besides its anti-inflammatory effects, LXA₄ differentially regulated the expression and activity of the matrix remodeling enzyme matrix metalloproteinase (MMP)-9 as well as modulating transforming growth factor (TGF)-β isoform expression within endometriotic lesions and in peritoneal fluid cells. We also report for first time that LXA₄ attenuated aromatase expression, estrogen signaling and estrogen-regulated genes implicated in cellular proliferation in a mouse model of disease. These effects were observed both when LXA₄ was administered prior to disease induction and during established disease. Collectively, our findings highlight potential targets for the treatment of endometriosis and suggest a pleotropic effect of LXA₄ on disease progression, by attenuating pro-inflammatory and angiogenic mediators, matrix remodeling enzymes, estrogen metabolism and signaling, as well as downstream proliferative pathways
    corecore