3,304 research outputs found

    A Model of the Ventral Visual System Based on Temporal Stability and Local Memory

    Get PDF
    The cerebral cortex is a remarkably homogeneous structure suggesting a rather generic computational machinery. Indeed, under a variety of conditions, functions attributed to specialized areas can be supported by other regions. However, a host of studies have laid out an ever more detailed map of functional cortical areas. This leaves us with the puzzle of whether different cortical areas are intrinsically specialized, or whether they differ mostly by their position in the processing hierarchy and their inputs but apply the same computational principles. Here we show that the computational principle of optimal stability of sensory representations combined with local memory gives rise to a hierarchy of processing stages resembling the ventral visual pathway when it is exposed to continuous natural stimuli. Early processing stages show receptive fields similar to those observed in the primary visual cortex. Subsequent stages are selective for increasingly complex configurations of local features, as observed in higher visual areas. The last stage of the model displays place fields as observed in entorhinal cortex and hippocampus. The results suggest that functionally heterogeneous cortical areas can be generated by only a few computational principles and highlight the importance of the variability of the input signals in forming functional specialization

    Universal decay law in charged-particle emission and exotic cluster radioactivity

    Full text link
    A linear universal decay formula is presented starting from the microscopic mechanism of the charged-particle emission. It relates the half-lives of monopole radioactive decays with the QQ-values of the outgoing particles as well as the masses and charges of the nuclei involved in the decay. This relation is found to be a generalization of the Geiger-Nuttall law in α\alpha radioactivity and explains well all known cluster decays. Predictions on the most likely emissions of various clusters are presented.Comment: 2 figure

    The good character at work: an initial study on the contribution of character strengths in identifying healthy and unhealthy work-related behavior and experience patterns

    Get PDF
    Purpose: Positive psychological functioning has been related to various positive work-related outcome variables, such as job satisfaction or work engagement. The aim of the present study was to examine the relations between morally positively valued traits (i.e., strengths of character) and work-related behaviors. Method: A sample of 887 adult women completed the Values in Action Inventory of Strengths (VIA-IS) and the Work-related Behavior and Experience Patterns Questionnaire (AVEM) in an online survey. Results: Those assigned to healthy work-related behavior and experience patterns differed in their strengths profiles from those that demonstrated unhealthy patterns (i.e., burnout type) in a predictable way. Especially the strengths of zest, persistence, hope, and curiosity seemed to play a key role in healthy and ambitious work behavior. Conclusions: The study underlines the relevance of character strengths in work settings and suggests that interventions based on character strengths could substantiate interventions already existing at the workplace in order to enhance positive work outcomes further (e.g., work satisfaction, engagement

    Mean magnitude variations of earthquakes as a function of depth: Different crustal stress distribution depending on tectonic setting

    Get PDF
    International audienceThe mean magnitude of earthquakes in the Gulf of Corinth is found to increase strongly with depth (b-value decreases), whereas the dip of fault planes decreases. The b-value difference of 0.25, between shallow and deep earthquake distributions, is based on about 7,000 events and therefore is statistically highly significant. The same is true in California, but opposite patterns are observed in southern Iceland and in western Nagano, Japan. Because large mean magnitudes (low b-values) are indicative of relatively high stress levels, we propose that in the detachment layer at about 9 ± 2 km depth, earthquakes are generated at higher stresses than in the shallower parts of the crust. The correlation of low b-values with low faulting dips can be taken as line of evidence that low b-values map high stress regimes

    Observation of vortex-nucleated magnetization reversal in individual ferromagnetic nanotubes

    Get PDF
    The reversal of a uniform axial magnetization in a ferromagnetic nanotube (FNT) has been predicted to nucleate and propagate through vortex domains forming at the ends. In dynamic cantilever magnetometry measurements of individual FNTs, we identify the entry of these vortices as a function of applied magnetic field and show that they mark the nucleation of magnetization reversal. We find that the entry field depends sensitively on the angle between the end surface of the FNT and the applied field. Micromagnetic simulations substantiate the experimental results and highlight the importance of the ends in determining the reversal process. The control over end vortex formation enabled by our findings is promising for the production of FNTs with tailored reversal properties.Comment: 20 pages, 13 figure

    Enhanced Stability of Superheavy Nuclei due to High-Spin Isomerism

    Get PDF
    Configuration-constrained calculations of potential-energy surfaces in even-even superheavy nuclei reveal systematically the existence at low excitation energies of multi-quasiparticle states with deformed axially symmetric shapes and large angular momenta. These results indicate the prevalence of long-lived, multi-quasiparticle isomers. In a quantal system, the ground state is usually more stable than the excited states. In contrast, in superheavy nuclei the multi-qausiparticle excitations decrease the probability for both fission and α\alpha decay, implying enhanced stability. Hence, the systematic occurrence of multi-qausiparticle isomers may become crucial for future production and study of even heavier nuclei. The energies of multi-quasiparticle states and their α\alpha decays are calculated and compared to available data.Comment: 4 pages, 5 figures, accepted for publication in PR

    Molecular structure of highly-excited resonant states in 24^{24}Mg and the corresponding 8^8Be+16^{16}O and 12^{12}C+12^{12}C decays

    Full text link
    Exotic 8^8Be and 12^{12}C decays from high-lying resonances in 24^{24}Mg are analyzed in terms of a cluster model. The calculated quantities agree well with the corresponding experimental data. It is found that the calculated decay widths are very sensitive to the angular momentum carried by the outgoing cluster. It is shown that this property makes cluster decay a powerful tool to determine the spin as well as the molecular structures of the resonances.Comment: 17 pages, no figur

    Alternate proof of the Rowe-Rosensteel proposition and seniority conservation

    Full text link
    For a system with three identical nucleons in a single-jj shell, the states can be written as the angular momentum coupling of a nucleon pair and the odd nucleon. The overlaps between these non-orthonormal states form a matrix which coincides with the one derived by Rowe and Rosensteel [Phys. Rev. Lett. {\bf 87}, 172501 (2001)]. The propositions they state are related to the eigenvalue problems of the matrix and dimensions of the associated subspaces. In this work, the propositions will be proven from the symmetric properties of the 6j6j symbols. Algebraic expressions for the dimension of the states, eigenenergies as well as conditions for conservation of seniority can be derived from the matrix.Comment: 9 pages, no figur

    Far-infrared induced current in a ballistic channel -- potential barrier structure

    Full text link
    We consider electron transport in a ballistic multi-mode channel structure in the presence of a transversely polarized far-infrared (FIR) field. The channel structure consists of a long resonance region connected to an adiabatic widening with a potential barrier at the end. At frequencies that match the mode energy separation in the resonance region we find distinct peaks in the photocurrent, caused by Rabi oscillations in the mode population. For an experimental situation in which the width of the channel is tunable via gates, we propose a method for reconstructing the spectrum of propagating modes, without having to use a tunable FIR source. With this method the change in the spectrum as the gate voltage is varied can be monitored.Comment: Submitted to Phys. Rev.
    • …
    corecore