171 research outputs found

    Comparison between the United States and United Kingdom Criticality Safety Personnel Training Program Guidance

    Get PDF

    CC199 Fall Potato Production Guide for Western Nebraska

    Get PDF
    EC199 discusses fall potato production quide for western Nebraska

    CC199 Fall Potato Production Guide for Western Nebraska

    Get PDF
    EC199 discusses fall potato production quide for western Nebraska

    Non-Equilibrium Reaction Rates in the Macroscopic Chemistry Method for DSMC Calculations

    Get PDF
    The Direct Simulation Monte Carlo (DSMC) method is used to simulate the flow of rarefied gases. In the Macroscopic Chemistry Method (MCM) for DSMC, chemical reaction rates calculated from local macroscopic flow properties are enforced in each cell. Unlike the standard total collision energy (TCE) chemistry model for DSMC, the new method is not restricted to an Arrhenius form of the reaction rate coefficient, nor is it restricted to a collision cross-section which yields a simple power-law viscosity. For reaction rates of interest in aerospace applications, chemically reacting collisions are generally infrequent events and, as such, local equilibrium conditions are established before a significant number of chemical reactions occur. Hence, the reaction rates which have been used in MCM have been calculated from the reaction rate data which are expected to be correct only for conditions of thermal equilibrium. Here we consider artificially high reaction rates so that the fraction of reacting collisions is not small and propose a simple method of estimating the rates of chemical reactions which can be used in the Macroscopic Chemistry Method in both equilibrium and non-equilibrium conditions. Two tests are presented: (1) The dissociation rates under conditions of thermal non-equilibrium are determined from a zero-dimensional Monte-Carlo sampling procedure which simulates ‘intra-modal’ non-equilibrium; that is, equilibrium distributions in each of the translational, rotational and vibrational modes but with different temperatures for each mode; (2) The 2-D hypersonic flow of molecular oxygen over a vertical plate at Mach 30 is calculated. In both cases the new method produces results in close agreement with those given by the standard TCE model in the same highly nonequilibrium conditions. We conclude that the general method of estimating the non-equilibrium reaction rate is a simple means by which information contained within non-equilibrium distribution functions predicted by the DSMC method can be included in the Macroscopic Chemistry Method

    Data submission and curation for caArray, a standard based microarray data repository system

    Get PDF
    caArray is an open-source, open development, web and programmatically accessible array data management system developed at National Cancer Institute. It was developed to support the exchange of array data across the Cancer Biomedical Informatics Grid (caBIG™), a collaborative information network that connect scientists and practitioners through a shareable and interoperable infrastructure to share data and knowledge. caArray adopts a federated model of local installations, in which data deposited are shareable across caBIG™. 

Comprehensive in annotation yet easy to use has always been a challenge to any data repository system. To alleviate this difficulty, caArray accepts data upload using the MAGE-TAB, a spreadsheet-based format for annotating and communicating microarray data in a MIAME-compliant fashion ("http://www.mged.org/mage-tab":http://www.mged.org/mage-tab). MAGE-TAB is built on community standards – MAGE, MIAME, and Ontology. The components and work flow of MAGE-TAB files are organized in such a way which is already familiar to bench scientists and thus minimize the time and frustration of reorganizing their data before submission. The MAGE-TAB files are also structured to be machine readable so that they can be easily parsed into database. Users can control public access to experiment- and sample-level data and can create collaboration groups to support data exchange among a defined set of partners. 

All data submitted to caArray at NCI will go through strict curation by a group of scientists against these standards to make sure that the data are correctly annotated using proper controlled vocabulary terms and all required information are provided. Two of mostly used ontology sources are MGED ontology ("http://mged.sourceforge.net/ontologies/MGEDontology.php":http://mged.sourceforge.net/ontologies/MGEDontology.php) and NCI thesaurus ("http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do":http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do). The purpose of data curation is to ensure easy comparison of results from different labs and unambiguous report of results. 

Data will also undergo automatic validation process before parsed into database, in which minimum information requirement and data consistency with the array designs are checked. Files with error found during validation are flagged with error message. Curators will re-examine those files and make necessary corrections before re-load the files. The iteration repeats until files are validated successfully. Data are then imported into the system and ready for access through the portal or through API. Interested parties are encouraged to review the installation package, documentation, and source code available from "http://caarray.nci.nih.gov":http://caarray.nci.nih.gov

    Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress

    Get PDF
    Acknowledgments We thank Alexander Johnson (yhb1D/D), Karl Kuchler (sodD/D mutants), Janet Quinn (hog1D/D, hog1/cap1D/D, trx1D/D) and Peter Staib (ssu1D/D) for providing mutant strains. We acknowledge helpful discussions with our colleagues from the Microbial Pathogenicity Mechanisms Department, Fungal Septomics and the Microbial Biochemistry and Physiology Research Group at the Hans Kno¨ll Institute (HKI), specially Ilse D. Jacobsen, Duncan Wilson, Sascha Brunke, Lydia Kasper, Franziska Gerwien, Sea´na Duggan, Katrin Haupt, Kerstin Hu¨nniger, and Matthias Brock, as well as from our partners in the FINSysB Network. Author Contributions Conceived and designed the experiments: PM HW IMB AJPB OK BH. Performed the experiments: PM CD HW. Analyzed the data: PM HW IMB AJPB OK BH. Wrote the paper: PM HW OK AJPB BH.Peer reviewedPublisher PD

    Evaluation of LLNL's Nuclear Accident Dosimeters at the CALIBAN Reactor September 2010

    Get PDF
    The Lawrence Livermore National Laboratory uses neutron activation elements in a Panasonic TLD holder as a personnel nuclear accident dosimeter (PNAD). The LLNL PNAD has periodically been tested using a Cf-252 neutron source, however until 2009, it was more than 25 years since the PNAD has been tested against a source of neutrons that arise from a reactor generated neutron spectrum that simulates a criticality. In October 2009, LLNL participated in an intercomparison of nuclear accident dosimeters at the CEA Valduc Silene reactor (Hickman, et.al. 2010). In September 2010, LLNL participated in a second intercomparison of nuclear accident dosimeters at CEA Valduc. The reactor generated neutron irradiations for the 2010 exercise were performed at the Caliban reactor. The Caliban results are described in this report. The procedure for measuring the nuclear accident dosimeters in the event of an accident has a solid foundation based on many experimental results and comparisons. The entire process, from receiving the activated NADs to collecting and storing them after counting was executed successfully in a field based operation. Under normal conditions at LLNL, detectors are ready and available 24/7 to perform the necessary measurement of nuclear accident components. Likewise LLNL maintains processing laboratories that are separated from the areas where measurements occur, but contained within the same facility for easy movement from processing area to measurement area. In the event of a loss of LLNL permanent facilities, the Caliban and previous Silene exercises have demonstrated that LLNL can establish field operations that will very good nuclear accident dosimetry results. There are still several aspects of LLNL's nuclear accident dosimetry program that have not been tested or confirmed. For instance, LLNL's method for using of biological samples (blood and hair) has not been verified since the method was first developed in the 1980's. Because LLNL and the other DOE participants were limited in what they were allowed to do at the Caliban and Silene exercises and testing of various elements of the nuclear accident dosimetry programs cannot always be performed as guests at other sites, it has become evident that DOE needs its own capability to test nuclear accident dosimeters. Angular dependence determination and correction factors for NADs desperately need testing as well as more evaluation regarding the correct determination of gamma doses. It will be critical to properly design any testing facility so that the necessary experiments can be performed by DOE laboratories as well as guest laboratories. Alternate methods of dose assessment such as using various metals commonly found in pockets and clothing have yet to be evaluated. The DOE is planning to utilize the Godiva or Flattop reactor for testing nuclear accident dosimeters. LLNL has been assigned the primary operational authority for such testing. Proper testing of nuclear accident dosimeters will require highly specific characterization of the pulse fields. Just as important as the characterization of the pulsed fields will be the design of facilities used to process the NADs. Appropriate facilities will be needed to allow for early access to dosimeters to test and develop quick sorting techniques. These facilities will need appropriate laboratory preparation space and an area for measurements. Finally, such a facility will allow greater numbers of LLNL and DOE laboratory personnel to train on the processing and interpretation of nuclear accident dosimeters and results. Until this facility is fully operational for test purposes, DOE laboratories may need to continue periodic testing as guests of other reactor facilities such as Silene and Caliban
    corecore