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Abstract 36 

Animal conservation requires a sound understanding of the movement ecology and habitat 37 

selection of the species in question. A key component of this is identifying habitats that animals 38 

actively seek or avoid. We quantified habitat selection and investigated the drivers of 39 

variability in the short-term activity area of a small, endangered mesopredator, the northern 40 

quoll (Dasyurus hallucatus), in the Pilbara region of Western Australia. We collated, 41 

standardised, and analysed 14 northern quoll GPS tracking events from four studies conducted 42 

between 2014 and 2018. Northern quolls selected activity areas in locations that were more 43 

topographically rugged than the broader landscape, characterised by higher percentage cover 44 

of rocky habitat and riverbed, and lower percentage cover of spinifex sandplain. The size of 45 

their activity area also increased with higher percentage cover of non-preferred spinifex 46 

sandplain. Therefore, the destruction of habitats preferred by northern quolls—such as mining 47 

of rocky habitat—and introduction of structurally simple habitat like spinifex sandplain, is 48 

likely to negatively impact resource availability and lead to altered movement patterns that 49 

could decrease survival. Future conservation planning should place emphasis on the protection 50 

of rugged rocky habitat for northern quolls, as well as efficient movement pathways between 51 

patches of this critical habitat.  52 
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Introduction 53 

Effective conservation requires knowledge of the spatial and temporal use of preferred habitats 54 

by target species (Dellinger et al. 2020). Animal space use reflects resource availability in the 55 

landscape (Michel et al. 2020; Wysong et al. 2020). If landscapes are resource-rich, animals 56 

travel shorter distances (Doherty et al. 2019; Martin and Martin 2007; Viana et al. 2018). 57 

Conversely, where resources are limited, animals travel further to access food, shelter, or mates 58 

(Gardiner et al. 2019; Rus et al. 2020; Stobo-Wilson et al. 2021). In fragmented landscapes, 59 

where an animal’s preferred habitat is interspersed among non-preferred habitat, animals may 60 

need to acquire resources from multiple patches of the preferred habitat type (Dunning et al. 61 

1992). The spatial extent and configuration of non-preferred habitat can affect the capacity of 62 

animals to move between preferred habitat (Nimmo et al. 2019): large areas of non-preferred 63 

habitat can lead to increased travel time (Beasley and Rhodes 2010), reducing foraging 64 

efficiency while increasing predation risk and energy expenditure (Brown 1988; Haapakoski 65 

et al. 2013). These behaviours are often influenced by predator interactions and the ‘landscape 66 

of fear’, where animals perceive certain habitats as riskier than others (Bleicher 2017; Brown 67 

1988). 68 

 69 

One species which lacks information about its movement and habitat use is the northern quoll 70 

(Dasyurus hallucatus)—an endangered, nocturnal mesopredator native to northern Australia 71 

(Moore et al. 2019). Over the past century, northern quolls have suffered substantial range 72 

declines (Braithwaite and Griffiths 1994; Moore et al. 2019), presumably due to habitat loss, 73 

introduced predators (namely the feral cat, Felis catus), altered fire regimes, and cane toads 74 

(Rhinella marina) (Ibbett et al. 2018; Moore et al. 2019; Woinarski et al. 2010). The Pilbara 75 

region of Western Australia contains the last cane toad-free populations of northern quolls 76 

(Moore et al. 2019; Woinarski et al. 2014). Yet quolls in the Pilbara are far from secure (Cramer 77 

et al. 2016; Moore et al. 2021a). Drill and blast mining operations often target the rocky habitat 78 

that also provides crucial denning sites for northern quolls (Ramanaidou and Morris 2010), 79 

because of their rich deposits of minerals such as iron ore, resulting in a structurally simplified 80 

landscape (Cramer et al. 2016; Henderson 2015). Based on previous research, we know 81 

northern quolls are most likely to be found in rugged rocky outcrops but are less common in 82 

spinifex sandplain habitats (Hernandez-Santin et al. 2016; Moore et al. 2021b). 83 

 84 
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While this research has informed much conservation work (Moore et al. 2021a), we know very 85 

little about how rocky habitat and spinifex sandplain influence northern quoll movement and 86 

space use, and even less about how northern quolls interact with other habitat types (Cramer et 87 

al. 2016). Understanding how northern quolls use different habitats, and how these habitats 88 

influence their movements, will allow greater protection of critical habitat and better inform 89 

rehabilitation projects which seek to reconnect remnant habitat or replicate northern quoll 90 

habitat that has been disturbed or destroyed (e.g., Cowan et al. 2020b). 91 

 92 

In this study, we investigate the movement ecology of northern quolls in a naturally fragmented 93 

landscape of rocky outcrops, spinifex sandplains, Acacia stands, and dry riverbeds in the 94 

Pilbara, Western Australia. Riverbed in the Pilbara is often associated with rocky habitat, while 95 

Acacia stands are patchily distributed amongst spinifex sandplain and rocky habitat (Van 96 

Vreeswyk et al. 2004). Previous estimates of northern quoll movement are mostly derived from 97 

Very High Frequency (VHF) tracking (e.g., Cook 2010; King 1989; Oakwood 2002)—a 98 

technology now largely superseded by Global Positioning System (GPS) tracking (e.g., 99 

Heiniger et al. 2020; Hernandez-Santin et al. 2020). We collated, standardised, and analysed 100 

GPS data from four studies to investigate habitat selection, and the influence of habitat type on 101 

movement, by northern quolls. We developed two predictions based on existing knowledge of 102 

northern quoll behaviour and ecology: 103 

 104 

First, we predicted that northern quolls would select for habitats which are topographically 105 

rugged, such as rocky habitat and riverbed—which likely offer many resources required for 106 

survival. The landscape of fear also suggests that quolls would avoid simpler habitats like 107 

spinifex sandplain and Acacia stands. Rocky habitat is likely seen as safer by northern quolls, 108 

as feral cats, an agent of northern quoll decline—and a threat to other quoll species (Fancourt 109 

et al. 2015)—are more common and superior hunters in simpler habitats like spinifex sandplain 110 

(McGregor et al. 2015). 111 

 112 

Second, we predicted that northern quoll activity areas (i.e., the movement footprint of northern 113 

quolls over seven nights) would be larger when containing higher percentages of presumably 114 

non-preferred habitat, such as spinifex sandplain, due to a lack of necessary resources for 115 

quolls, requiring them to travel further to access preferred habitat (e.g., rocky habitat).  116 
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Materials and methods 117 

Study area 118 

The Pilbara bioregion covers 179,000 km2 of Western Australia and experiences a semi-arid 119 

climate, with average maximum temperatures of 37℃ during summer and 25℃ during winter 120 

(McKenzie et al. 2009). Annual rainfall is variable (250–500 mm), and falls predominately 121 

between December and February (Bureau of Meteorology 2020). The Pilbara is characterised 122 

by patches of rocky habitat with rugged hills, deep gorges, rough escarpments, and sandy plains 123 

(Carwardine et al. 2014; Van Vreeswyk et al. 2004). The flora is diverse but is predominately 124 

composed of Acacia, Triodia (spinifex), and Eucalyptus species, the composition of which is 125 

largely influenced by local geology and fire history (Maslin and van Leeuwen 2008; Van 126 

Vreeswyk et al. 2004).  127 

 128 

We studied habitat selection of northern quolls at four sites in the Pilbara, using data from four 129 

different studies conducted between 2014 and 2018 (Biologic 2016; Cowan et al. 2020b; 130 

Hernandez-Santin et al. 2020; Moore, unpubl. data; Figure 1; Table S1 & S2). Studies occurred 131 

primarily on Karriyarra, Ngarluma, and Nyamal country, and occupied a mixture of pastoral 132 

leases, national parks, and mining tenements (Table S1). Study sites were broadly similar in 133 

that they all contained rocky habitat, spinifex sandplain, and scattered Acacia stands. One site, 134 

Red Rock, also contained a sandy riverbed which flows seasonally and is closely associated 135 

with rock (Van Vreeswyk et al. 2004; Figure 2). 136 

  137 

Maps of habitat features 138 

We used QGIS v3.12 (QGIS Development Team 2020) to create a map of habitat features for 139 

each site. We applied semi-supervised classification of normalised difference vegetation index 140 

(NDVI) layers (Pandey and Kulhari 2018), derived from Sentinel-2 imagery (USGS 2020), to 141 

map the six habitat types we considered likely to influence the spatial ecology of northern 142 

quolls: rocky habitat, spinifex sandplain, Acacia midstory over spinifex understory (henceforth 143 

Acacia stands), sandy dry riverbeds (henceforth riverbed), water, and disturbed ground (e.g., a 144 

road or cleared land). Feature layers for the habitat maps were captured at a scale of 10 m for 145 

each site during the year tracking took place—except for at Red Rock where we used a 146 

consistent layer (2014) for each year. Red Rock had no fires between 2014 and 2018 and habitat 147 

features remained relatively consistent across years. Habitat feature maps were cross-examined 148 

with the corresponding satellite imagery to ensure the accuracy of habitat feature classification 149 
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(as per Tilahun and Teferie 2015). During analysis, we did not investigate northern quoll 150 

selection of water or disturbed ground due to a lack of representation among sites. 151 

 152 

Animal capture and data acquisition 153 

Trapping effort varied slightly between the studies, however, the same broad method was 154 

applied, and all live animal research was approved by the respective institutional animal ethics 155 

committees (see Acknowledgements). Wire cage traps (45 cm × 17 cm × 17 cm, Sheffield Wire 156 

Co., Welshpool, WA) were deployed in transects during autumn, winter, or spring between 157 

2014 and 2018 (see Biologic 2016; Cowan et al. 2020b; Hernandez-Santin et al. 2019). 158 

Trapping did not occur during summer to avoid trapping females raising young during this time 159 

(Dunlop et al. 2014). Traps were placed in rocky and riparian habitats because these are the 160 

areas in which northern quolls locate their dens in the Pilbara (Hernandez-Santin et al. 2022), 161 

resulting in an increased likelihood of trap success. Traps were baited with universal bait (oats 162 

and peanut butter) or a mixture of the universal bait and sardines (as per Dunlop et al. 2014). 163 

Traps were opened in the evening and checked the following morning. All individuals were 164 

processed at the site of trapping, which involved taking a series of morphological 165 

measurements, recording sex and weight, and attaching a GPS unit (provided the unit did not 166 

exceed five percent of the animal’s bodyweight). GPS units were deployed on 25 individuals 167 

for up to 37 days before animals were re-trapped and the GPS unit was removed. GPS units 168 

were fitted as collars or backpacks; brands and tracking methods differed slightly between 169 

studies due to limitations of battery life, data storage, and study time (Table S2). 170 

 171 

Data screening and processing 172 

To eliminate errors and reduce bias due to variation in study methods, data were screened prior 173 

to being included in analysis. Data contributed by Biologic (2016) had been pre-screened by 174 

the authors to discard all locations not recording elevation, as well as those with low GPS 175 

accuracy (horizontal dilution of precision greater than 5). We screened all datasets further by 176 

discarding GPS points before 12:00 pm on the day of collaring, as well as all those after 12:00 177 

pm on the date before collar retrieval, as GPS fixes may have been affected by quolls being in 178 

a trap. Unrealistic GPS fixes were removed based on the average sprinting speed of northern 179 

quolls (4.5 m s–1) (Wynn et al. 2015), where points too far to be reached in the time between 180 

fixes were excluded (Bjørneraas et al. 2010). 181 

 182 
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To ensure that GPS locations reflected the times when northern quolls were active, we only 183 

included GPS locations recorded between 6:00 pm and 6:00 am. Individuals with fewer than 184 

30 fixes, as well as individuals whose GPS units failed within the first day, were removed 185 

because there was unlikely sufficient data to accurately measure activity areas (Girard et al. 186 

2002; Seaman et al. 1999). We did not standardise fix rates among datasets because doing so 187 

resulted in many unusable individuals with too few GPS locations, and differences in fix rate 188 

are often negligible when applying kernel density estimation (Huck et al. 2008; Mitchell et al. 189 

2019; Peris et al. 2020). 190 

 191 

Activity area size 192 

Many tracking events did not represent complete home ranges of each individual and instead 193 

represented a sample of each individual’s home range. This is because they did not reach an 194 

asymptote with fixes added sequentially (i.e., over time) at 10-fix intervals. An asymptote is 195 

calculated by plotting activity area with the number of fixes—with 10 sequential fixes added 196 

in each iteration in this case—and is reached when adding additional fixes has little to no effect 197 

on the size of the activity area, thus representing a true home range (Harris et al. 1990). Instead, 198 

to account for differing tracking durations among individuals, we standardised each dataset to 199 

a total period of seven nights (one week) and refer to the area used by northern quolls during 200 

this time as their ‘short-term activity area’ (henceforth activity area) (Doherty et al. 2019). 201 

Some individuals were tracked for one week, but GPS tracking ceased before seven nights of 202 

data could be reached (likely due to battery failure or memory limitations). Therefore, six 203 

individuals were tracked for less than seven nights, and six individuals were tracked for seven 204 

nights (n = 12). The shorter tracking duration for these individuals is accounted for in further 205 

analyses (see below). For one individual (E6CA67) tracked for 29 nights, we isolated each 206 

seven-night period (hereafter referred to as a ‘tracking event’), separated by a buffer of one 207 

night between each. Each tracking event was treated as an individual event, and therefore the 208 

individual quoll appears in the data three times. We accounted for this by including ‘individual’ 209 

as a random effect in all analyses (Bates et al. 2015). 210 

 211 

We estimated northern quoll activity area from utilisation distributions (UDs) at the 95% 212 

isopleth using fixed kernel density estimation (KDE). Kernel density estimation uses a 213 

smoothing parameter or bandwidth (h) to smooth GPS points, creating a probability density 214 

estimate which reflects the intensity of use within an animal’s activity area (Signer et al. 2015). 215 

We used the ad hoc method (had hoc) (referred to as ‘reference scaled’ in the R package; see 216 
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below) to determine h because had hoc is robust to sample size, accurately reflects the true 217 

activity area, and is consistent and repeatable (Kie 2013). We used fixed KDE (where the kernel 218 

width remains the same regardless of the distance between points) instead of adaptive KDE 219 

(where the kernel width increases with increasing distance between points) because adaptive 220 

KDE can sometimes over-estimate activity area size (Blundell et al. 2001; Kernohan et al. 221 

2001; Powell 2000). We used the package “rhr” (Table S3, Signer and Balkenhol 2015) in R 222 

version 1.3.959 to estimate activity area (R Core Team 2020). 223 

 224 

Habitat selection 225 

To analyse northern quoll habitat selection, we quantified the percentage of habitat types in 226 

each “used” short-term activity area (n = 14) and 10 randomly placed circular “available” 227 

activity areas per individual (n = 140), equal in size to the activity area of the individual being 228 

measured and randomly placed within the available landscape (Squires et al. 2013; Wysong et 229 

al. 2020). Due to the fragmented nature of northern quoll habitat in the Pilbara (Moore et al. 230 

2021b), available activity areas for each individual were sampled within habitat considered 231 

accessible by that individual (Hazen et al. 2021). To define the boundaries for the available 232 

landscape for each individual, we followed a similar method to Wysong et al. (2020). We fitted 233 

a 100% minimum convex polygon (MCP) to the GPS data of each individual tracking event. 234 

We then placed a buffer around each MCP equal to the radius of the largest northern quoll 235 

activity area if assumed to be circular (897 m). We then subtracted the radius of the activity 236 

area being measured. We used the “extract” function in the “raster” package to determine the 237 

proportion cover of each habitat type within each “used” and “available” activity area in R 238 

(Hijmans et al. 2015). 239 

 240 

To test our predictions about selection and avoidance of the four habitat types, we used Beta-241 

Binomial Mixed Models (BBMMs) to evaluate if the proportion cover of each habitat type 242 

differed between “used” and “available” activity areas. BBMMs allow for the analysis of 243 

proportion data—including over-dispersed proportion data—and random effects (Douma and 244 

Weedon 2019). We did not account for tracking duration in BBMMs because the data were 245 

proportion data which was relative to each individual tracking event. A separate BBMM was 246 

fitted for each habitat type. The response variable was the proportional cover of the habitat type 247 

(rocky habitat, riverbed, spinifex sandplain, Acacia stands) within an activity area, and the 248 

predictor variable was the “used” or “available” activity area. The reference category 249 

(intercept) was the “available” activity area category. Selection (or avoidance) was evaluated 250 
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using a p-value statistical significance approach. We included ‘individual’ and ‘site’ as random 251 

effects (Muff et al. 2020). BBMMs were fitted using the package “PROreg” in R (Najera-252 

Zuloaga et al. 2020). 253 

 254 

We also investigated whether northern quolls selected for highly topographically rugged areas. 255 

The topographic ruggedness index (TRI) is defined as the difference in elevation between a 256 

cell and the eight cells surrounding it (Riley et al. 1999). To create topographic ruggedness 257 

index maps for each site, we sourced Digital Elevation Models (30 m scale) (Gallant et al. 258 

2009) , and used the “Terrain Ruggedness Index” function in QGIS (QGIS Development Team 259 

2020). We overlaid the “used” and “available” northern quoll activity areas onto topographic 260 

ruggedness maps and identified the median topographic ruggedness index for each activity 261 

area. To evaluate if northern quolls used activity areas with a higher median topographic 262 

ruggedness index compared to the broader landscape, we fitted a Generalised Linear Mixed 263 

Model (GLMM) with ‘individual’ as a random effect, and median topographic ruggedness as 264 

a continuous response variable (Bates et al. 2015). We could not include site as a random effect 265 

due to small sample size. The categorical predictor variable was either the “used” or “available” 266 

(intercept) activity area. GLMMs were fitted using the package “lmerTest” in R (Kuznetsova 267 

et al. 2015). 268 

 269 

Determinants of activity area  270 

To test our prediction that northern quoll activity areas would increase in size with an 271 

increasing percentage cover of spinifex sandplain, we developed Linear Mixed Models 272 

(LMMs) in which the response variable was the “used” activity area size, and the predictor 273 

variable was one of: median topographic ruggedness index (median TRI), sex, weight, or the 274 

proportional cover of rocky habitat, spinifex sandplain, or riverbed. We included only 275 

univariate models to simplify model selection and preclude overfitting, due to our small sample 276 

size. We also only considered habitat variables that northern quolls either selected or avoided 277 

disproportionately more than what was available in the broader landscape (i.e., rocky habitat, 278 

spinifex sandplain, and riverbed), therefore, Acacia stands were excluded. The response 279 

variable was log10
 transformed because predictor variables had non-linear relationships, and 280 

‘individual’ was included as a random effect to account for the repeat sampling of the same 281 

individual (Bates 2010). We could not include ‘site’ as a random effect due to small sample 282 

size (Bates et al. 2015; Stratmann et al. 2021). To account for some individuals having less 283 

than seven nights of data, we included ‘nights’ as an offset in the model, which was the number 284 
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of nights each individual was tracked (Stobo-Wilson et al. 2021). This variable was also log10
 285 

transformed. GLMs were fitted using the package “lme4” in R (Bates et al. 2020). 286 

 287 

We applied second order Akaike’s Information Criterion (AICc) ranking to determine the best 288 

model explaining variation in activity area size. We determined the goodness of fit (r2) for all 289 

models and acknowledged models as having substantial support when Δ AICc <2 (Burnham 290 

and Anderson 2001; Mac Nally et al. 2018). We used the “AICcmodavg” package in R to 291 

conduct model selection (Mazerolle and Mazerolle 2017).  292 



11 
 

Results 293 

Of the 25 northern quolls collared in the four studies, data for eight female and four male 294 

northern quolls met our study criteria (n = 12), resulting in 14 tracking events (Figure S1). 295 

Three of these tracking events occurred during autumn, seven during winter, and four during 296 

spring (Table S4). Nine tracking events occurred at Red Rock, three at Cattle Gorge, and one 297 

each at De Grey Ridge and Python Pool. After data were trimmed to the relevant diel period, 298 

five location errors were removed from the datasets of three northern quolls in total. The mean 299 

number of GPS fixes for all weekly (seven-night) short-term activity areas was 267 ± 57 fixes 300 

(mean ± SE) while the minimum was 69 fixes, and the maximum was 418 fixes (Table 1; Table 301 

S4). 302 

 303 

Activity area size 304 

For weekly short-term tracking events, the mean activity area for females and males combined 305 

was 153.42 ± 38.69 ha (Table 1). The mean weekly activity area for females was 91.24 ± 24.39 306 

ha (min = 22.96 ha, max = 128.62 ha), while the mean weekly activity area for males was 307 

215.61 ± 61.75 ha (min = 53.84 ha, max = 340.54 ha) (Table 1; Table S4). 308 

 309 

Habitat selection 310 

Northern quolls selected activity areas in locations with significantly higher percentage cover 311 

of rocky habitat and riverbed, and significantly lower percentage cover of spinifex sandplain, 312 

compared to the available landscape (Figure 3, Table 2). Their activity areas had a similar 313 

percentage of Acacia stands compared to the available landscape (Figure S2; Table 2). Finally, 314 

northern quolls selected activity areas in locations with significantly higher topographic 315 

ruggedness compared to the available landscape (Figure 3, Table 2). 316 

 317 

Some northern quolls primarily used rocky habitat connected by riverbed and spinifex 318 

sandplain; riverbed was often associated with rocky habitat at Red Rock (Figure 4a). One male 319 

northern quoll used an activity area covering large areas of spinifex sandplain at Python Pool 320 

to access patches of rocky habitat (Figure 4b). Others used mainly rocky habitat like at Cattle 321 

Gorge (Figure 4c), while one female had an activity area with high cover of Acacia stands at 322 

De Grey Ridge (Figure 4d, Table S4). 323 

 324 

Determinants of activity area size 325 
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The model “spinifex sandplain” was the top-ranked model (wi AICc = 0.56) and explained 20% 326 

of the variability in activity area size (Table 3). This model showed that northern quoll activity 327 

area increased in size when the percentage cover of spinifex sandplain was higher (Figure 5).   328 
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Discussion 329 

We investigated the movement ecology of the endangered northern quoll in an arid landscape 330 

to identify their preferred habitat and drivers of activity area size. As predicted, northern quolls 331 

located their short-term activity areas in habitats that were more rugged, characterised by 332 

higher percentage cover of rocky habitat and riverbed than the available landscape. Northern 333 

quolls also selected activity areas in locations with a lower percentage cover of spinifex 334 

sandplain than the available landscape, and activity areas increased in size when they contained 335 

a higher percentage cover of spinifex sandplain. Our findings support those of previous studies 336 

which suggest rugged rocky areas provide critical habitat for the Pilbara northern quoll (Moore 337 

et al. 2021a), and are likely rich in key resources compared to spinifex sandplain. Together 338 

these results have important implications for the conservation of this species, particularly in 339 

terms of the loss of rugged rocky habitat. 340 

 341 

As predicted, northern quolls selected activity areas in locations with higher percentage cover 342 

of rocky habitat and in areas which were more topographically rugged than the available 343 

landscape. This supports findings from other studies and confirms that northern quolls and 344 

many other critical weight range mammals (CWR, 35–5500 g) (Murphy and Davies 2014) 345 

persist in rugged, rocky habitat at a landscape scale (Burbidge and McKenzie 1989; Hernandez-346 

Santin and Fisher 2022; McDonald et al. 2017; Molloy et al. 2017; Moore et al. 2019; 347 

Oakwood 2002). Structurally complex rocky habitats in the Pilbara provide several resources 348 

and functions to northern quolls which are critical for survival. These include thermally stable 349 

denning habitat (Cowan et al. 2020b), protection from predators (Hernandez-Santin et al. 350 

2016), and abundant prey (Dunlop et al. 2017). Rocky habitat also protects CWR mammals 351 

from fire, grazing, and extreme temperatures (Fitzsimons and Michael 2017; McDonald et al. 352 

2017).  The availability of rugged rocky habitat therefore appears critical for northern quoll 353 

persistence, and potential removal of rugged rocky habitat due to human disturbance (e.g., 354 

mining) is likely to heavily impact their persistence (Cramer et al. 2016). 355 

 356 

Some habitat types may be avoided because they lack crucial resources or contain risks which 357 

animals prefer to avoid (Aldridge and Boyce 2007; Polfus et al. 2011). Here, the apparent 358 

avoidance of spinifex sandplain by northern quolls is likely explained by increased predation 359 

risk in this habitat type and the landscape of fear, which suggests that animals move between 360 

resource patches more regularly in areas close to shelter, due to greater perceived safety 361 
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(Bleicher and Dickman 2020; Laundré et al. 2001). For example, feral cats are most successful 362 

at hunting in open habitats, where prey is more exposed (McGregor et al. 2015; Moseby et al. 363 

2021; Stobo-Wilson et al. 2020), such as spinifex sandplain. Hernandez-Santin et al. (2016) 364 

showed that feral cats frequently used flat, open spinifex sandplain in their Pilbara ranges and 365 

northern quolls avoided areas used by cats spatially and temporally. Moving through spinifex 366 

sandplain is likely risky for the smaller quoll, due to the increased chance of intraguild 367 

predation (Virgós et al. 2020). Reducing the predation risk by feral cats through control 368 

programs could benefit quolls by enabling them to make greater use of spinifex sandplains and 369 

reducing their reliance on fragmented rocky habitat. For example, after feral cat baiting in the 370 

Pilbara, northern quolls were detected using lowland habitats most frequently used by feral 371 

cats, likely due to reduced predation pressure (Palmer et al. 2021). Similarly, on Groote 372 

Eylandt—an island in the Northern Territory with a low abundance of northern quoll 373 

predators—northern quolls occupied, had better body condition, and fed within a broader 374 

dietary niche within savanna woodland compared to rocky habitat (Thomas et al. 2021).  375 

 376 

The rocky habitat preferred by northern quolls [in the presence of feral cats] in the Pilbara is 377 

naturally fragmented by spinifex sandplain and (sometimes) by riverbed (Moore et al. 2021b; 378 

Van Vreeswyk et al. 2004). Therefore, northern quolls must travel through these habitats to 379 

reach isolated rocky habitat patches. When present, northern quolls selected activity areas in 380 

locations with higher percentage cover of riverbed. Conversely, activity areas were larger when 381 

they contained higher percentage cover of spinifex sandplain. Spinifex sandplain covers great 382 

expanses between rocky habitat and does not offer much protection to northern quolls, with a 383 

lack of denning structures or shelter due to low habitat complexity (Hernandez-Santin et al. 384 

2022; Moore et al. 2021b). The increased travel time caused by having large amounts of 385 

spinifex sandplain within their activity areas likely exacerbates the already increased risk of 386 

predation for northern quolls in this habitat, and may negatively affect their foraging efficiency 387 

or fitness (Perry and Pianka 1997). This is supported by the fact that northern quolls in the 388 

Pilbara are less abundant in landscapes where rocky habitat is more fragmented (Moore et al. 389 

2022). A return to landscape management techniques, such as traditional mosaic burning, may 390 

reduce the large-scale burning of spinifex sandplain, creating increased habitat complexity 391 

(Greenwood et al. 2021). When coupled with effective feral cat management (Cowan et al. 392 

2020a), this may decrease feral cat success in spinifex sandplain and increase the usability of 393 

this habitat by northern quolls (Doherty et al. 2015)—like mosaic burning has done for other 394 
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small Australian species (Bliege Bird et al. 2013; Holland and Bennett 2007; McDonald et al. 395 

2016). 396 

 397 

The selection of areas with increased cover of riverbed by northern quolls is likely because 398 

riverbed is often associated with rocky habitat and may facilitate movement and foraging 399 

opportunities (Ruprecht 1996). Hernandez-Santin et al. (2016) found that the distribution of 400 

northern quolls in the Pilbara was positively associated with creek lines, but the distribution of 401 

feral cats was not, highlighting potential benefits of using this habitat for quolls, as for many 402 

small terrestrial vertebrates (Sánchez-Montoya et al. 2016). However, this habitat is also likely 403 

important for the dispersal of larger predators of the northern quoll in some instances, including 404 

feral cats and dingoes (Canis dingo) (Williamson et al. 2021; Wysong et al. 2020). Riverbeds 405 

may also offer food for northern quolls. Here, riverbeds were dry, but often hold surface water 406 

in the form of puddles for much longer than the surrounding landscape (Smit and Grant 2009). 407 

In a mesic environment in Queensland, Pollock (1999) found that ~60% of northern quoll 408 

locations were less than 200 m from permanent water, while Hill and Ward (2010) noted that 409 

in the Northern Territory there was higher prey availability for northern quolls near water 410 

sources. Therefore, riverbeds may facilitate a form of landscape complementation for northern 411 

quolls, where quolls benefit from the resources available within two key habitats (i.e., rocky 412 

habitat and riverbed) (Dunning et al. 1992; Nimmo et al. 2019). Previously, emphasis has been 413 

placed on protecting or attempting to replicate only rocky habitat for northern quolls (Cowan 414 

et al. 2020b). However, this emphasises the importance of considering potential dispersal 415 

routes and supplemental foraging habitats when planning for northern quoll conservation and 416 

management (Bennett 1990; Doherty and Driscoll 2018). 417 

 418 

Our study adds to the growing body of knowledge that suggests that northern quolls require 419 

rugged, rocky habitat for survival in the Pilbara, and that their space use is driven by selection 420 

for habitats which provide shelter from larger predators such as feral cats. This study also 421 

provides a baseline for future studies to investigate how human disturbances such as fire, 422 

mining, and agriculture influence northern quoll movement and space use (Moore et al. 2021a). 423 

The destruction of complex rugged habitat or efficient movement corridors, and replacement 424 

with simple habitat—such as cleared land or spinifex sandplain—will likely have dramatically 425 

negative effects on northern quolls, including expulsing local populations, or having 426 

cumulative impacts on the broader population by limiting movement or causing populations to 427 

become isolated. Alternatively, it may force northern quolls to travel longer distances to gain 428 
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the resources needed for survival, potentially decreasing individual body condition and leaving 429 

quolls exposed to increased predation, risk of fire, and grazing pressures. The conservation of 430 

northern quolls in the Pilbara should value existing rugged, rocky habitat which provides 431 

important food resources and protection from predation, as well as efficient movement 432 

pathways such as riverbeds that facilitate dispersal. Spinifex sandplain may also offer foraging 433 

resources for northern quolls in the Pilbara, but currently, predation risk is likely driving its’ 434 

avoidance. Management actions to increase complexity of spinifex sandplain may drive higher 435 

use of this habitat by northern quolls, and all conservation actions should be coupled with 436 

effective management of invasive predators such as feral cats.  437 
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Figure legends 853 

Figure 1. A map of the locations of the four sites in the Pilbara region of Western Australia 854 

where northern quolls were tracked between 2014 and 2018. Black points represent study sites 855 

and white points represent major towns close to study sites. The satellite base map was sourced 856 

from ESRI (2021). 857 

 858 

Figure 2: Examples of the dominant habitat types at our study sites in the Pilbara region of 859 

Western Australia: a) rocky habitat, which often rises above the landscape to form outcrops; b) 860 

spinifex sandplain, which fragments rocky habitat and can stretch for kilometres; c) Acacia 861 

stands, which can form thick patches throughout the rocky spinifex matrix; and d) riverbed, 862 

which consists of a sandy base between rocky habitat and vegetation. Photographs: Cowan, M. 863 

 864 

Figure 3. Habitat variables significantly selected or avoided by northern quolls were: the 865 

proportional cover of a) rocky habitat, b) riverbed, and c) spinifex sandplain, and d) the median 866 

topographic ruggedness index (median TRI), Black points represent data values within 867 

‘available’ and ‘used’ northern quoll activity areas., grey points represent outliers, and red 868 

asterisks signify a significant difference between ‘used’ and ‘available’ activity areas. Boxplots 869 

show the distribution of the data for available and used activity areas. 870 

 871 

Figure 4. Habitat maps of the four sites in the Pilbara region of Western Australia with 872 

examples of a) two female northern quoll activity areas at Red Rock showing use of rocky 873 

habitat, riverbed, and spinifex sandplain; b) a male northern quoll activity area at Python Pool 874 

covering rocky habitat and Acacia stands but also large amounts of spinifex sandplain; c) a 875 

female northern quoll activity area at Cattle Gorge primarily using rocky habitat; and d) a 876 

female northern quoll activity area at De Grey Ridge using primarily rocky habitat and Acacia 877 

stands. Habitat maps were derived from Sentinel-2 imagery (USGS 2020). 878 

 879 

Figure 5. The a) coefficients, and b) predicted effects of the top-ranked model (spinifex 880 

sandplain) determining northern quoll activity area. Northern quoll activity area was log10 881 

transformed to increase normality. In plot a), points reflect coefficients, thick bars represent 882 

the standard error, thin bars represent 95% confidence intervals, and the red dashed line 883 

represents the zero line (zero difference from the intercept). All bars which do not touch the 884 
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zero line are significant. The intercept reflects the reference level: 0% cover of spinifex 885 

sandplain. For plot b), the black line represents the predicted effects, and the red band 886 

represents the 95% confidence interval. 887 
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Tables 889 

Table 1. The mean and standard error (SE) of short-term activity area size and percentage 890 

cover of each habitat type for all northern quolls, female northern quolls, and male northern 891 

quolls. Means and SE for habitat cover (%) reflect all short-term activity areas (i.e., including 892 

those tracked for less than seven nights). However, short-term activity area size (ha) marked 893 

with an asterisk (*) reflects only activity areas which reached seven nights. Individual 894 

characteristics for each tracking event can be found in Table S4. 895 

Measure Sex 

Short-term 

activity area 

size (ha)* 

Rocky 

habitat 

(%) 

Spinifex 

sandplain (%) 

Acacia 

stands (%) 

Riverbed 

(%) 

Mean All 153.42 23.14 57.09 12.68 4.86 

 Female 91.24 27.07 50.95 13.89 4.98 

 Male 215.61 13.33 72.44 9.66 4.57 

SE All 38.69 3.12 3.86 3.94 1.27 

 Female 24.39 0.03 0.04 0.05 0.02 

 Male 61.75 5.97 4.55 2.74 1.78 

896 
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Table 2. Outputs from BBMMs and GLMMs for northern quoll habitat selection. Habitat types 897 

in bold denote that used activity areas differed significantly to the intercept (available activity 898 

areas). SE represents the standard error. 899 

Habitat variable Activity area type Coefficient SE t value p value 

Rocky habitat Intercept -2.48 0.09 -27.88 <0.001 

Used 1.08 0.25 4.32 <0.001 

Riverbed Intercept -9.55 0.12 -81.62 <0.001 

Used 0.92 0.31 2.92 0.004 

Spinifex sandplain Intercept 0.87 0.07 11.69 <0.001 

Used -0.79 0.23 -3.41 <0.001 

Acacia stands Intercept -2.44 0.06 -41.68 <0.001 

Used 0.19 0.18 1.03 0.302 

Median TRI Intercept 0.63 0.31 2.00 0.140 

Used 0.79 0.18 4.48 <0.001 

 900 
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Table 3. Model selection outputs for possible determinants of northern quoll activity area size, 902 

offset for the number of nights tracked. Rocky habitat, riverbed, and spinifex sandplain are the 903 

proportion of the activity area comprising that habitat type, median TRI is the median 904 

topographic ruggedness index of the activity area, sex is whether the quoll was male or female, 905 

and weight is the body weight of the individual. Models are ranked in descending order from 906 

best to least supported. K represents the number of estimated parameters for each model, AICc 907 

represents the Akaike’s Information Criterion, Δ AICc indicates the delta AIC value, and wi 908 

AICc indicates the level of support for each model. Log-likelihood and model fit are also 909 

provided for each model. Models in bold are those which had substantial support (Δ AICc <2, 910 

Burnham and Anderson 2001; Mac Nally et al. 2018). 911 

Rank Model K AICc Δ AICc wi AICc Log-likelihood r2
 

1 spinifex sandplain 4 43.05 0 0.56 -15.3 0.20 

2 median TRI 4 45.84 2.79 0.14 -16.7 0.02 

3 riverbed 4 46.5 3.45 0.1 -17.03 0.13 

4 rocky habitat 4 46.98 3.93 0.08 -17.27 0.03 

5 weight 4 47.47 4.42 0.06 -17.51 0.04 

6 sex 4 47.74 4.7 0.05 -17.65 0.01 

 912 
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Short summary for online Table of Contents 914 

To effectively conserve species, we must have a good understanding of the key habitats that 915 

they use or avoid. We investigated the habitat use of the endangered northern quoll and found 916 

that they primarily selected areas with higher proportions of rugged, rocky habitat and riverbed, 917 

and avoided areas with higher proportions of spinifex sandplain—a habitat which caused quolls 918 

to have larger activity areas. These findings will inform conservation efforts to increase 919 

protection of key habitats for the endangered northern quoll. 920 

 921 


