217 research outputs found
Zalecenia projektowania, budowy i utrzymania przejść dla zwierząt - dokument ujednolicający problematykę
With the sustainable development of transport infrastructure can not ignore the environmental problems. This applies both to build much-needed new roads and railways, as well, as their modernization. For this purpose, it becomes essential to build passages for animals and culverts of complex function. The author of the paper moves the need for a unified Recommendations of Design, Construction and Maintenance of Animal Passages, which clearly organize all the issues associated with these objects. Currently such recommendations are being developed under the leadership of the author.Przy zrównoważonym rozwoju infrastruktury komunikacyjnej, jak ogólnie wiadomo, nie da się pominąć zagadnień ekologicznych. Dotyczy to zarówno budowy nowych tak potrzebnych dróg kołowych i linii kolejowych, jak też i ich modernizacji. W tym celu nieodzowna staje się budowa przejść dla zwierząt i przepustów o funkcji zespolonej. Autor referatu porusza konieczność opracowania ujednoliconych Zaleceń Projektowania, Budowy i Utrzymania Przejść dla Zwierząt, które w sposób jednoznaczny uporządkowałyby wszystkie kwestie związane z tymi obiektami. Obecnie zalecenia takie są w fazie opracowywania
Stalowe ruszty jako innowacyjne nawierzchnie dróg tymczasowych
The needs related to reduction of lead time and quality of construction determines implementation of the new technologies. An example of such an activity is a development of pavements used to build temporary roads, carried out mainly for the needs of equipment and materials delivery to a construction site. This is especially important in civil engineering, where location is dictated by a number of local conditions, which often is associated with the occurrence of adverse groundwater conditions. Commonly used traditional design solutions of temporary roads such as unpaved roads or roads made by concrete slabs require good ground conditions or proper stabilized subsoil,which may ultimately result in a significant increase of the cost of the construction. Modern temporary paving structures not only transmit the exploitation load on the subsoil. They use subsoil, as a an structure cooperating in load distribution, so it is possible to use such a construction of road on a low-bearing soil. An innovative solution in this case are three-dimensional steel grids cooperating with a subsoil. The paper describes the preliminary modeling studies of this type of pavement structures.Potrzeby związane ze skróceniem czasu realizacji oraz jakości wykonywanych robót budowlanych determinują wprowadzanie nowych, zróżnicowanych technologii. Przykładem takich działań jest rozwój nawierzchni wykorzystywanych do budowy tymczasowych dróg, realizowanych głównie na potrzeby dostarczania sprzętu oraz materiałów w obszarze placu budowy. Ma to szczególne znaczenie w budownictwie komunikacyjnym, gdzie lokalizacja podyktowana jest szeregiem uwarunkowań lokalnych, przez co często mamy do czynienia z występowaniem niekorzystnych warunków gruntowych. Powszechnie stosowane tradycyjne rozwiązania konstrukcji dróg tymczasowych w postaci nawierzchni gruntowej lub nawierzchni z betonowych płyt drogowych wymaga dobrych warunków gruntowych lub prawidłowego wzmocnienia podłoża, co w konsekwencji może skutkować znaczącym podniesieniem kosztów budowy. Nowoczesne nawierzchnie tymczasowe nie tylko przekazują obciążenie na podłoże. Wykorzystują podłoże gruntowe, jako ośrodek współpracujący w rozkładzie obciążenia eksploatacyjnego, dzięki czemu istnieje możliwość realizacji dróg również na podłożu słabonośnym. Innowacyjnym rozwiązaniem w tym zakresie są przestrzenne stalowe ruszty współpracujące z podłożem gruntowym. W referacie opisane zostały wstępne badania modelowe tego typu konstrukcji nawierzchni
Modern scaffolding strategies based on naturally pre-fabricated 3D biomaterials of poriferan origin
Modern scaffolding strategies include two key ways: to produce requested 3D constructs from corresponding precursors using technological tools, or simply use naturally already pre-fabricated scaffolds if they originate from renewable sources. Marine sponges inhabit oceans since the Precambrian. These ancient multicellular organisms possess a broad variety of evolutionary approved and ready to use skeletal structures, which seem to be well applicable as 3D scaffolds in diverse fields of modern bioinspired materials science, biomimetics and regenerative medicine. In this review, most attention is paid to biosilica-, chitin-, and spongin-based scaffolds of poriferan origin with respect to their potential use. © 2020, The Author(s).Deutsche Forschungsgemeinschaft, DFG: HE 394–3Ministerstwo Nauki i Szkolnictwa Wyższego, MNiSW: 0912/SBAD/2006PPN/BEK/2018/1/00071Deutsche Forschungsgemeinschaft, DFGSächsisches Staatsministerium für Wissenschaft und Kunst, SMWK: 02010311This work was financially supported by German Research Foundation (DFG) grant HE 394–3, SMWK Project 02010311 (Germany) and subsidy from the Ministry of Science and Higher Education, Poland to PUT (no. 0912/SBAD/2006). M.W. is thankful for financial support from Polish National Agency for Academic Exchange (PPN/BEK/2018/1/00071)
1H NMR spectroscopy study of structural water in rehydrated biocomposite of Spongilla lacustris freshwater demosponge origin
Biocomposites of sponge origin attract scientific attention due to their renewability as well as special properties. Dried skeletons of fresh water demosponge Spongilla lacustris represent unique kind of naturally occurring silica-chitin-based biocomposites with long history of their applications in dermatocosmetics. However, there is still a lack of knowledge on their physico-chemical properties in model systems. The aim of this work was to model drug systems based on S. lacustris powdered biocomposite, water and a hydrophobic medium, which served as an analog of an oil base. Both thermogravimetric analysis and 1H NMR spectroscopy study of structural water in rehydrated biocomposite lead to obtaining of interesting experimental data useful for preparation of biocosmetic products. © 2020, The Author(s).Deutsche Forschungsgemeinschaft, DFG: HE 394-3PPN/BEK/2018/1/00071Deutsche Forschungsgemeinschaft, DFGSächsisches Staatsministerium für Wissenschaft und Kunst, SMWK: 02010311This work was financially supported by German Research Foundation (DFG) Grant HE 394-3, SMWK Project 02010311 (Germany). M.W. is thankful for financial support from Polish National Agency for Academic Exchange (PPN/BEK/2018/1/00071) and support from Ministry of Science and Higher Education (Poland) as financial subsidy to PUT
Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study
AbstractAnalysis was carried out to determine the physicochemical characteristics – morphological and structural, electrokinetic properties, elemental composition and functional groups – of peat, with a view to its use as a potential adsorbent of heavy metal ions from aqueous solutions. A significant part of the study comprised tests of adsorption of nickel(II) and lead(II) ions from model solutions. It was determined how the parameters of the adsorption process (time, pH, quantity of sorbent) influence the effectiveness of removal of nickel(II) and lead(II) ions. The adsorption kinetics are also described, using a pseudo-first-order model and pseudo-second-order models of types 1–4. The results show strong correspondence to a pseudo-second-order kinetics model of type 1 (r2=0.999 for all initial concentrations). Another key part of the analysis was the use of the Langmuir and Freundlich models to determine the adsorption isotherms. The experimental data were in strong correspondence with Langmuir’s isotherm model. The sorption capacities of peat with respect to nickel(II) and lead(II) ions were 61.27mg(Ni2+)/g and 82.31mg(Pb2+)/g. Desorption tests confirmed the possibility of reusing peat as an effective sorbent of environmentally harmful metals. A mechanism is also proposed for the adsorption of Ni2+ and Pb2+ ions on adsorbent
Surface-dependent osteoblasts response to TiO2 nanotubes of different crystallinity
One of the major challenges of implantology is to design nanoscale modifications of titanium implant surfaces inducing osseointegration. The aim of this study was to investigate the behavior of rat osteoblasts cultured on anodized TiO2 nanotubes of different crystallinity (amorphous and anatase phase) up to 24 days. TiO2 nanotubes were fabricated on VT1–0 titanium foil via a two-step anodization at 20 V using NH4F as an electrolyte. Anatase-phase samples were prepared by heat treatment at 500 °C for 1 h. VT1–0 samples with flat surfaces were used as controls. Primary rat osteoblasts were seeded over experimental surfaces for several incubation times. Scanning electron microscopy (SEM) was used to analyze tested surfaces and cell morphology. Cell adhesion and proliferation were investigated by cell counting. Osteogenic differentiation of cells was evaluated by qPCR of runt-related transcription factor 2 (RUNX2), osteopontin (OPN), integrin binding sialoprotein (IBSP), alkaline phosphatase (ALP) and osteocalcin (OCN). Cell adhesion and proliferation, cell morphology and the expression of osteogenic markers were affected by TiO2 nanotube layered substrates of amorphous and anatase crystallinity. In comparison with flat titanium, along with increased cell adhesion and cell growth a large portion of osteoblasts grown on the both nanostructured surfaces exhibited an osteocyte-like morphology as early as 48 h of culture. Moreover, the expression of all tested osteogenic markers in cells cultured on amorphous and anatase TiO2 nanotubes was upregulated at least at one of the analyzed time points. To summarize, we demonstrated that amorphous and anodized TiO2 layered substrates are highly biocompatible with rat osteoblasts and that the surface modification with about 1500 nm length nanotubes of 35 ± 4 (amorphous phase) and 41 ± 8 nm (anatase phase) in diameter is sufficient to induce their osteogenic differentiation. Such results are significant to the engineering of coating strategies for orthopedic implants aimed to establish a more efficient bone to implant contact and enhance bone repair. © 2020 by the author. Licensee MDPI, Basel, Switzerland.Deutscher Akademischer Austauschdienst, DAADRussian Science Foundation, RSF: 18‐13‐00220Ministry of Education and Science of the Russian Federation, Minobrnauka: 57447934PPN/BEK/2018/1/00071Funding: The experimental work was funded by the Russian Science Foundation (grant no. 18‐13‐00220). This research was partially supported by DAAD together with the Ministry of Education and Science of the Russian Federation within Michael Lomonosov Program (project No. 57447934); M.W. was financially supported by the Polish National Agency for Academic Exchange (PPN/BEK/2018/1/00071)
Electrochemical approach for isolation of chitin from the skeleton of the black coral cirrhipathes sp. (Antipatharia)
The development of novel and effective methods for the isolation of chitin, which remains one of the fundamental aminopolysaccharides within skeletal structures of diverse marine invertebrates, is still relevant. In contrast to numerous studies on chitin extraction from crustaceans, mollusks and sponges, there are only a few reports concerning its isolation from corals, and especially black corals (Antipatharia). In this work, we report the stepwise isolation and identification of chitin from Cirrhipathes sp. (Antipatharia, Antipathidae) for the first time. The proposed method, aiming at the extraction of the chitinous scaffold from the skeleton of black coral species, combined a well-known chemical treatment with in situ electrolysis, using a concentrated Na2SO4 aqueous solution as the electrolyte. This novel method allows the isolation of a-chitin in the form of a microporous membrane-like material. Moreover, the extracted chitinous scaffold, with a well-preserved, unique pore distribution, has been extracted in an astoundingly short time (12 h) compared to the earlier reported attempts at chitin isolation from Antipatharia corals. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
Electrochemical method for isolation of chitinous 3D scaffolds from cultivated Aplysina aerophoba marine demosponge and its biomimetic application
Three-dimensional (3D) biopolymer-based scaffolds including chitinous matrices have been widely used for tissue engineering, regenerative medicine and other modern interdisciplinary fields including extreme biomimetics. In this study, we introduce a novel, electrochemically assisted method for 3D chitin scaffolds isolation from the cultivated marine demosponge Aplysina aerophoba which consists of three main steps: (1) decellularization, (2) decalcification and (3) main deproteinization along with desilicification and depigmentation. For the first time, the obtained electrochemically isolated 3D chitinous scaffolds have been further biomineralized ex vivo using hemolymph of Cornu aspersum edible snail aimed to generate calcium carbonates-based layered biomimetic scaffolds. The analysis of prior to, during and post-electrochemical isolation samples as well as samples treated with molluscan hemolymph was conducted employing analytical techniques such as SEM, XRD, ATR–FTIR and Raman spectroscopy. Finally, the use of described method for chitin isolation combined with biomineralization ex vivo resulted in the formation of crystalline (calcite) calcium carbonate-based deposits on the surface of chitinous scaffolds, which could serve as promising biomaterials for the wide range of biomedical, environmental and biomimetic applications. © 2020, The Author(s).Politechnika PoznaÅ ska, PUT: 0911/SBAD/0380/2019Deutsche Forschungsgemeinschaft, DFG: HE 394/3Deutscher Akademischer Austauschdienst, DAADRussian Science Foundation, RSF: 18-13-00220PPN/BEK/2018/1/0007103/32/SBAD/0906Sächsisches Staatsministerium für Wissenschaft und Kunst, SMWK: 02010311This work was performed with the financial support of Poznan University of Technology, Poland (Grant No. 0911/SBAD/0380/2019), as well as by the Ministry of Science and Higher Education (Poland) as financial subsidy to PUT No. 03/32/SBAD/0906. Krzysztof Nowacki was supported by the Erasmus Plus program (2019). Also, this study was partially supported by the DFG Project HE 394/3 and SMWK Project No. 02010311 (Germany). Marcin Wysokowski is financially supported by the Polish National Agency for Academic Exchange (PPN/BEK/2018/1/00071). Tomasz Machałowski is supported by DAAD (Personal Ref. No. 91734605). Yuliya Khrunyk is supported by the Russian Science Foundation (Grant No. 18-13-00220)
Recommended from our members
Express method for isolation of ready-to-use 3D chitin scaffolds from aplysina archeri (aplysineidae: verongiida) demosponge
Sponges are a valuable source of natural compounds and biomaterials for many biotechnological applications. Marine sponges belonging to the order Verongiida are known to contain both chitin and biologically active bromotyrosines. Aplysina archeri (Aplysineidae: Verongiida) is well known to contain bromotyrosines with relevant bioactivity against human and animal diseases. The aim of this study was to develop an express method for the production of naturally prefabricated 3D chitin and bromotyrosine-containing extracts simultaneously. This new method is based on microwave irradiation (MWI) together with stepwise treatment using 1% sodium hydroxide, 20% acetic acid, and 30% hydrogen peroxide. This approach, which takes up to 1 h, made it possible to isolate chitin from the tube-like skeleton of A. archeri and to demonstrate the presence of this biopolymer in this sponge for the first time. Additionally, this procedure does not deacetylate chitin to chitosan and enables the recovery of ready-to-use 3D chitin scaffolds without destruction of the unique tube-like fibrous interconnected structure of the isolated biomaterial. Furthermore, these mechanically stressed fibers still have the capacity for saturation with water, methylene blue dye, crude oil, and blood, which is necessary for the application of such renewable 3D chitinous centimeter-sized scaffolds in diverse technological and biomedical fields. © 2019 by the authors
Recommended from our members
Naturally prefabricated marine biomaterials: Isolation and applications of flat chitinous 3D scaffolds from Ianthella labyrinthus (demospongiae: Verongiida)
Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge Ianthella labyrinthus Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the suitability of I. labyrinthus chitinous skeleton as ready-to-use scaffold for their cell culture. Results reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds coated with extracellular matrix mimetic Geltrex®. Thus, the natural, unmodified I. labyrinthus cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition, I. labyrinthus chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep into the microtubes due to their excellent capillary effect. These findings are suggestive of the future development of new sponge chitin-based absorbable hemostats as alternatives to already well recognized cellulose-based fabrics. © 2019 by the authors. Licensee MDPI, Basel, Switzerland
- …