1,659 research outputs found

    Explaining LIGO's observations via isolated binary evolution with natal kicks

    Get PDF
    We compare binary evolution models with different assumptions about black-hole natal kicks to the first gravitational-wave observations performed by the LIGO detectors. Our comparisons attempt to reconcile merger rate, masses, spins, and spin-orbit misalignments of all current observations with state-of-the-art formation scenarios of binary black holes formed in isolation. We estimate that black holes (BHs) should receive natal kicks at birth of the order of σ≃200\sigma\simeq 200 (50) km/s if tidal processes do (not) realign stellar spins. Our estimate is driven by two simple factors. The natal kick dispersion σ\sigma is bounded from above because large kicks disrupt too many binaries (reducing the merger rate below the observed value). Conversely, the natal kick distribution is bounded from below because modest kicks are needed to produce a range of spin-orbit misalignments. A distribution of misalignments increases our models' compatibility with LIGO's observations, if all BHs are likely to have natal spins. Unlike related work which adopts a concrete BH natal spin prescription, we explore a range of possible BH natal spin distributions. Within the context of our models, for all of the choices of σ\sigma used here and within the context of one simple fiducial parameterized spin distribution, observations favor low BH natal spin.Comment: 19 pages, 14 figures, as published in PR

    PHENIX first measurement of the J/psi elliptic flow parameter v2 in Au+Au collisions at sqrt(sNN) = 200 GeV

    Full text link
    Recent results indicate that the J/psi suppression pattern differs with rapidity showing a larger suppression at forward rapidity. J/psi suppression mechanisms based on energy density (such as color screening, interaction with co-movers, etc.) predict the opposite trend. On the other hand, it is expected that more c\bar{c} pairs should be available to form quarkonia at mid-rapidity via recombination. Some models provide a way to differentiate J/psi production from initially produced c\bar{c} pairs and final state recombination of uncorrelated pairs, via the rapidity and transverse momentum dependence of the elliptic flow (v2). During 2007 data taking at RHIC, a large sample of Au+Au collisions at sqrt(sNN)=200 GeV was collected. The statistics has been increased compared to previous 2004 data set, thus allowing a more precise measurement of the J/psi production at both mid and forward rapidity. Furthermore, the PHENIX experiment benefited from the addition of a new detector, which improves the reaction plane resolution and allows us to measure the J/psi v2. Comparing this measurement to the positive D-mesons v2 (through non-photonic electron decays) will help constraining the J/psi production mechanisms and getting a more precise picture of the proportion of J/psi coming from direct production or charm quark coalescence. Details on how the J/psi v2 is measured at both rapidities are presented. The J/psi v2 as a function of transverse momentum are compared to existing models.Comment: 4 pages, 3 figures, Quark Matter 2008 proceeding

    Dynamics of lane formation in driven binary complex plasmas

    Full text link
    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane formation process is in good agreement with computer simulations of a binary Yukawa model with Langevin dynamics. The laning is quantified in terms of the anisotropic scaling index, leading to a universal order parameter for driven systems.Comment: 4 pages, 3 figures, movies available at http://www.mpe.mpg.de/pke/lane-formation

    Multi-Objective and Financial Portfolio Optimization of Carrier-Sense Multiple Access Protocols with Cooperative Diversity

    Get PDF
    8th International Workshop on Multiple Access Communications (MACOM2015), Helsinki, Finland.This paper presents a trade-off design and optimization of a class of wireless carrier-sense multiple access protocols where collision-free transmissions are assisted by the potential cooperative retransmissions of inactive terminals with a correct copy of the original transmission. Terminals are enabled with a decode-and-forward relaying protocol. The analysis is focused on asymmetrical settings, where terminals experience different channel and queuing statistics. This work is based on multi-objective and financial portfolio optimization tools. Each packet transmission is thus regarded not only as a network resource, but also as a financial asset with different values of return and risk (or variance of the return). The objective of this financial optimization is to find the transmission policy that simultaneously maximizes return and minimizes risk in the network. The work is focused on the characterization of the boundaries (envelope) of different types of trade-off performance regions: the conventional throughput region, sum-throughput vs. fairness, sum-throughput vs. power, and return vs. risk regions. Fairness is evaluated by means of the Gini-index, which is a metric commonly used in economics to measure income inequality. Transmit power is directly linked to the global transmission rate. The protocol is shown to outperform non-cooperative solutions under different network conditions that are here discussed

    Topoisomer Differentiation of Molecular Knots by FTICR MS: Lessons from Class II Lasso Peptides

    Full text link
    Lasso peptides constitute a class of bioactive peptides sharing a knotted structure where the C-terminal tail of the peptide is threaded through and trapped within an N-terminalmacrolactamring. The structural characterization of lasso structures and differentiation from their unthreaded topoisomers is not trivial and generally requires the use of complementary biochemical and spectroscopic methods. Here we investigated two antimicrobial peptides belonging to the class II lasso peptide family and their corresponding unthreaded topoisomers: microcin J25 (MccJ25), which is known to yield two-peptide product ions specific of the lasso structure under collisioninduced dissociation (CID), and capistruin, for which CID does not permit to unambiguously assign the lasso structure. The two pairs of topoisomers were analyzed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) upon CID, infrared multiple photon dissociation (IRMPD), and electron capture dissociation (ECD). CID and ECDspectra clearly permitted to differentiate MccJ25 from its non-lasso topoisomer MccJ25-Icm, while for capistruin, only ECD was informative and showed different extent of hydrogen migration (formation of c\bullet/z from c/z\bullet) for the threaded and unthreaded topoisomers. The ECD spectra of the triply-charged MccJ25 and MccJ25-lcm showed a series of radical b-type product ions {\eth}b0In{\TH}. We proposed that these ions are specific of cyclic-branched peptides and result from a dual c/z\bullet and y/b dissociation, in the ring and in the tail, respectively. This work shows the potentiality of ECD for structural characterization of peptide topoisomers, as well as the effect of conformation on hydrogen migration subsequent to electron capture

    Chemoreception Regulates Chemical Access to Mouse Vomeronasal Organ: Role of Solitary Chemosensory Cells

    Get PDF
    Controlling stimulus access to sensory organs allows animals to optimize sensory reception and prevent damage. The vomeronasal organ (VNO) detects pheromones and other semiochemicals to regulate innate social and sexual behaviors. This semiochemical detection generally requires the VNO to draw in chemical fluids, such as bodily secretions, which are complex in composition and can be contaminated. Little is known about whether and how chemical constituents are monitored to regulate the fluid access to the VNO. Using transgenic mice and immunolabeling, we found that solitary chemosensory cells (SCCs) reside densely at the entrance duct of the VNO. In this region, most of the intraepithelial trigeminal fibers innervate the SCCs, indicating that SCCs relay sensory information onto the trigeminal fibers. These SCCs express transient receptor potential channel M5 (TRPM5) and the phospholipase C (PLC) β2 signaling pathway. Additionally, the SCCs express choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) for synthesizing and packaging acetylcholine, a potential transmitter. In intracellular Ca2+ imaging, the SCCs responded to various chemical stimuli including high concentrations of odorants and bitter compounds. The responses were suppressed significantly by a PLC inhibitor, suggesting involvement of the PLC pathway. Further, we developed a quantitative dye assay to show that the amount of stimulus fluid that entered the VNOs of behaving mice is inversely correlated to the concentration of odorous and bitter substances in the fluid. Genetic knockout and pharmacological inhibition of TRPM5 resulted in larger amounts of bitter compounds entering the VNOs. Our data uncovered that chemoreception of fluid constituents regulates chemical access to the VNO and plays an important role in limiting the access of non-specific irritating and harmful substances. Our results also provide new insight into the emerging role of SCCs in chemoreception and regulation of physiological actions
    • …
    corecore