106 research outputs found

    2D quantitative analysis of fractures from high-resolution photos for the geomechanical characterization of rock masses

    Get PDF
    The identification of discontinuity sets and their properties is among the key factors for the geomechanical characterization of rock masses, which is fundamental for performing stability analyses, and for planning prevention and mitigation measures as well. In practice, discontinuity data are collected throughout difficult and time-consuming field surveys, especially when dealing with areas of wide extension, difficult accessibility, covered by dense vegetation, or with adverse weather conditions. Consequently, even experienced operators may introduce sampling errors or misinterpretations, leading to biased geomechanical models for the investigated rock mass. In the last decades, new remote techniques such as photogrammetry, Light Detection and Ranging (LiDAR), Unmanned Aerial Vehicle (UAV) and InfraRed Thermography (IRT) have been introduced to overcome the limits of conventional surveys. We propose here a new tool for extracting information on the fracture pattern in rock masses, based on remote sensing methods, with particular reference to the analysis of high-resolution georeferenced photos. The first step consists in applying the Structure from Motion (SfM) technique on photos acquired by means of digital cameras and UAV techniques. Once aligned and georeferenced, the orthophotos are exported in a GIS software, to draw the fracture traces at an appropriate scale. We developed a MATLAB routine to extract information on the geostructural setting of rock masses by performing a quantitative 2D analysis of the fracture traces, based on formulas reported in the literature. The code was written by testing few experimental and simple traces and was successively validated on an orthophoto from a real case study. Currently, the script plots the fracture traces as polylines and calculates their orientation (strike) and length. Subsequently, it detects the main discontinuity sets by fitting an experimental composite Gaussian curve on histograms showing the number of discontinuities according to their orientation, and splitting the curve in simpler Gaussian curves, with peaks corresponding to the main discontinuity sets. Then, for each set, a linear scanline intersecting the highest number of traces is plotted, and the apparent and real spacing are calculated. In a second step, a grid of circular scanlines covering the whole area where the traces are located is plotted, and the mean trace intensity, trace density and trace length estimators are calculated. It is expected to test the presented tools on other case studies, in order to optimize them and calculate additional metrics, such as persistence and block sizes, useful to the geomechanical characterization of rock masses. As a future perspective, a similar approach could be investigated for 3D analyses from point clouds

    Reduction of nickel oxide particles by hydrogen studied in an environmental TEM

    Get PDF
    In situ reduction of nickel oxide (NiO) particles is performed under 1.3mbar of hydrogen gas (H2) in an environmental transmission electron microscope (ETEM). Images, diffraction patterns and electron energy-loss spectra (EELS) are acquired to monitor the structural and chemical evolution of the system during reduction, whilst increasing the temperature. Ni nucleation on NiO is either observed to be epitaxial or to involve the formation of randomly oriented grains. The growth of Ni crystallites and the movement of interfaces result in the formation of pores within the NiO grains to accommodate the volume shrinkage associated with the reduction. Densification is then observed when the sample is nearly fully reduced. The reaction kinetics is obtained using EELS by monitoring changes in the shapes of the Ni L2,3 white lines. The activation energy for NiO reduction is calculated from the EELS data using both a physical model-fitting technique and a model-independent method. The results of the model-fitting procedure suggest that the reaction is described by Avrami models (whereby the growth and impingement of Ni domains control the reaction), in agreement with the ETEM observation

    Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model

    Get PDF
    This is the final version. Available on open access from the Royal Society via the DOI in this recordData accessibility: This article has no additional data.We projected changes in weather extremes, hydrological impacts and vulnerability to food insecurity at global warming of 1.5°C and 2°C relative to pre-industrial, using a new global atmospheric general circulation model HadGEM3A-GA3.0 driven by patterns of sea-surface temperatures and sea ice from selected members of the 5th Coupled Model Intercomparison Project (CMIP5) ensemble, forced with the RCP8.5 concentration scenario. To provide more detailed representations of climate processes and impacts, the spatial resolution was N216 (approx. 60 km grid length in mid-latitudes), a higher resolution than the CMIP5 models. We used a set of impacts-relevant indices and a global land surface model to examine the projected changes in weather extremes and their implications for freshwater availability and vulnerability to food insecurity. Uncertainties in regional climate responses are assessed, examining ranges of outcomes in impacts to inform risk assessments. Despite some degree of inconsistency between components of the study due to the need to correct for systematic biases in some aspects, the outcomes from different ensemble members could be compared for several different indicators. The projections for weather extremes indices and biophysical impacts quantities support expectations that the magnitude of change is generally larger for 2°C global warming than 1.5°C. Hot extremes become even hotter, with increases being more intense than seen in CMIP5 projections. Precipitation-related extremes show more geographical variation with some increases and some decreases in both heavy precipitation and drought. There are substantial regional uncertainties in hydrological impacts at local scales due to different climate models producing different outcomes. Nevertheless, hydrological impacts generally point towards wetter conditions on average, with increased mean river flows, longer heavy rainfall events, particularly in South and East Asia with the most extreme projections suggesting more than a doubling of flows in the Ganges at 2°C global warming. Some areas are projected to experience shorter meteorological drought events and less severe low flows, although longer droughts and/or decreases in low flows are projected in many other areas, particularly southern Africa and South America. Flows in the Amazon are projected to decline by up to 25%. Increases in either heavy rainfall or drought events imply increased vulnerability to food insecurity, but if global warming is limited to 1.5°C, this vulnerability is projected to remain smaller than at 2°C global warming in approximately 76% of developing countries. At 2°C, four countries are projected to reach unprecedented levels of vulnerability to food insecurity. This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.European Union FP7Joint UK BEIS/Defra Met Office Hadley Centre Climate Programm

    Modification of textured silicon wafer surface morphology for fabrication of heterojunction solar cell with open circuit voltage over 700mV

    Get PDF
    Crystalline silicon wafer (c-Si) can be extremely well passivated by plasma enhanced chemical vapor deposited (PECVD) amorphous silicon (a-Si:H) films. As a result, on flat substrates, solar cells with very high open circuit voltage are readily obtained. On textured substrates however the passivation is more cumbersome, likely due to the presence of localized recombinative paths situated at the pyramid valleys. Here, we show that this issue may be resolved by selecting a silicon substrate morphology featuring large pyramids. Chemical post-texturization treatments can further reduce the surface recombination velocity. This sequence has allowed us to fabricate solar cells with open circuit voltage over 700 mV, demonstrating also on device level the effect of pyramid density and surface micro-roughness on the surface passivation quality

    Quantitative study of anode microstructure related to SOFC stack degradation

    Get PDF
    As the performances of Solid Oxide Fuel Cells (SOFC) get attractive, long term degradation becomes the main issue for this technology. Therefore it is essential to localise the origin of degradation and to understand its processes in order to find solutions and improve SOFC durability. The electrode microstructure ageing, in particular nickel grain coarsening at the anode side, is known to be a major process to cause performance loss. The increase in nickel particle size will diminish the Triple Phase Boundary (TPB), where fuel oxidation takes place, and decrease the anode electronic conductivity. These two effects degrade the electrochemical performance of the fuel electrode. Degradation is defined as the decrease of potential at constant current density with time in %/1000h or mV/1000h. This study is based on HTceramix® anode supported cells tested in stack conditions from 100 to more than 1000 hours. The anode microstructure has been characterized by Scanning Electron Microscopy (SEM). As the back scattered electron yield coefficients of nickel and yttria stabilized zirconia (YSZ) are very close, the contrast of the different phases (Ni, YSZ and pores) is low. Various techniques are used to enhance the contrast. A new technique is presented here using impregnation and SEM observation based on secondary electron yield coefficients to separate the phases. Image treatment and analysis is done with an in-house Mathematica® code. Image treatment follows four steps: 1. inhomogeneous background correction, 2. double thresholding, 3. cleaning of the binary images and 4. reconstruction of a three-phase image. Image analysis gives information about phase proportion, particle size, particle size distribution, contiguity and finally a new procedure is developed to compute TPB density. A model to describe the coarsening of the nickel particles is also developed. The model assumes an exponential growth of the nickel particles. Using a particle population balance, it estimates the growth of the nickel particles and the concomitant drop in the TPB length. This model is in very good agreement with experimental data, especially for relatively low fuel cell operation times (up to 100-200 hours). This model can be used in the estimation of operational parameters of the anode electrode such as the degradation rate using fundamental parameters of the cermet anode like the anode overpotential and the work of adhesion of the nickel particles on the YSZ substrate. This model gives the portion of stack degradation that corresponds to anode performance decrease due to particle sintering. Finally this study gives the possibility to isolate the degradation coming from the anode sintering and compare to the full SOFC stack degradation

    Properties of interfaces in amorphous/crystalline silicon heterojunctions

    Get PDF
    To study recombination at the amorphous/crystalline Si (a- Si:H/c-Si) heterointerface, the amphoteric nature of silicon (Si) dangling bonds is taken into account. Modeling interface recombination measured on various test structures provides insight into the microscopic passivation mechanisms, yielding an excellent interface defect density reduction by intrinsic a-Si:H and tunable field-effect passivation by doped layers. The potential of this model's applicability to recombination at other Si heterointerfaces is demonstrated. Solar cell properties of a-Si:H/c-Si heterojunctions are in good accordance with the microscopic interface properties revealed by modeling, that are, e.g., slight asymmetries in the neutral capture cross-sections and band offsets. The importance of atomically abrupt interfaces and the difficulties to obtain them on pyramidally textured c-Si is studied in combination with transmission electron microscopy
    corecore