54 research outputs found

    Development of a gas chromatography - mass spectrometry method for the determination of carbon disulfide in the atmosphere

    Full text link
    [EN] Carbon disulfide (CS2), a relevant reduced sulfur compound in air, is well-known for its malodor and its significant effect on global atmospheric chemistry. Therefore, a reliable method for determining CS2 in atmospheric samples has been developed based on solid-phase sampling and gas chromatography-mass spectrometry (GC-MS). Two types of solid-phase sampling supports (Orbo-32 and SKC) and the elution with organic solvents - hexane and toluene - were evaluated for low-volume outdoor sampling. Recovery studies and the standard addition method were carried out to demonstrate the proper determination of CS2 in the absence of the influence of interferences such as ozone, hydrogen sulfide or water - important atmospheric pollutants. The proposed methodology was validated by performing experiments in a high-volume smog chamber and by comparison with two reference optical methods, Fourier Transform Infrared (FTIR) and Differential Optical Absorption Spectroscopy (DOAS) installed in these facilities. Satisfactory analytical parameters were reported: fast analysis, a correct repeatability of 6±1% and reproducibility of 14±3%, and low detection limits of 0.3-0.9pgm-3. Finally, the method was successfully applied to industrial samples near a pulp factory area, where a high correlation between industrial emissions and reported carbon disulfide concentrations were observed. © 2011 Elsevier B.V.The research leading to these results received funding from the Centro de Investigacion del Medio Ambiente (CIMA), Consejeria de Medio Ambiente, Gobierno de Cantabria. The Instituto Universitario CEAM-UMH is partly supported by Generalitat Valenciana, Fundacion Bancaja, and the projects GRACCIE (Consolider-Ingenio 2010) and FEEDBACKS (Prometeo - Generalitat Valenciana). We also acknowledged the European Community's Seventh Framework Program under the grant agreement no. 228335 (Eurochamp2), the Spanish Ministry of Science and Innovation, through INNPLANTA project: PCT-440000-2010-003 and the EUPHORE staff for their support in the chamber experiments. The authors also thank J.T.B. for his contribution.Borrás García, EM.; Ródenas, M.; Dieguez, J.; Pérez-García, M.; Lomba, R.; Lavin, J.; Tortajada-Genaro, LA. (2012). Development of a gas chromatography - mass spectrometry method for the determination of carbon disulfide in the atmosphere. Microchemical Journal. 101:37-42. https://doi.org/10.1016/j.microc.2011.10.002S374210

    Conflict in object affordance revealed by grip force

    Get PDF
    Viewing objects can result in automatic, partial activation of motor plans associated with them—“object affordance”. Here, we recorded grip force simultaneously from both hands in an object affordance task to investigate the effects of conflict between coactivated responses. Participants classified pictures of objects by squeezing force transducers with their left or right hand. Responses were faster on trials where the object afforded an action with the same hand that was required to make the response (congruent trials) compared to the opposite hand (incongruent trials). In addition, conflict between coactivated responses was reduced if it was experienced on the preceding trial, just like Gratton adaptation effects reported in “conflict” tasks (e.g., Eriksen flanker). This finding suggests that object affordance demonstrates conflict effects similar to those shown in other stimulus–response mapping tasks and thus could be integrated into the wider conceptual framework on overlearnt stimulus–response associations. Corrected erroneous responses occurred more frequently when there was conflict between the afforded response and the response required by the task, providing direct evidence that viewing an object activates motor plans appropriate for interacting with that object. Recording continuous grip force, as here, provides a sensitive way to measure coactivated responses in affordance tasks

    Coupled fluid and energy flow in fabrication of microstructured optical fibres

    No full text
    We consider the role of heating and cooling in the steady drawing of a long and thin viscous thread with an arbitrary number of internal holes of arbitrary shape. The internal holes and the external boundary evolve as a result of the axial drawing and surface-tension effects. The heating and cooling affects the evolution of the thread because both the viscosity and surface tension of the thread are assumed to be functions of the temperature. We use asymptotic techniques to show that, under a suitable transformation, this complicated three-dimensional free boundary problem can be formulated in such a way that the transverse aspect of the flow can be reduced to the solution of a standard Stokes flow problem in the absence of axial stretching. The solution of this standard problem can then be substituted into a system of three ordinary differential equations that completely determine the flow. We use this approach to develop a very simple numerical method that can determine the way that thermal effects impact on the drawing of threads by devices that either specify the fibre tension or the draw ratio. We also develop a numerical method to solve the inverse problem of determining the initial cross-sectional geometry, draw tension and, importantly, heater temperature to obtain a desired cross-sectional shape and change in cross-sectional area at the device exit. This precisely allows one to determine the pattern of air holes in the preform that will achieve the desired hole pattern in the stretched fibre.Yvonne M. Stokes, Jonathan J. Wylie and M.J. Che

    The brain uses single-trial multisensory memories to discriminate without awareness.

    No full text
    Multisensory experiences enhance perceptions and facilitate memory retrieval processes, even when only unisensory information is available for accessing such memories. Using fMRI, we identified human brain regions involved in discriminating visual stimuli according to past multisensory vs. unisensory experiences. Subjects performed a completely orthogonal task, discriminating repeated from initial image presentations intermixed within a continuous recognition task. Half of initial presentations were multisensory, and all repetitions were exclusively visual. Despite only single-trial exposures to initial image presentations, accuracy in indicating image repetitions was significantly improved by past auditory-visual multisensory experiences over images only encountered visually. Similarly, regions within the lateral-occipital complex-areas typically associated with visual object recognition processes-were more active to visual stimuli with multisensory than unisensory pasts. Additional differential responses were observed in the anterior cingulate and frontal cortices. Multisensory experiences are registered by the brain even when of no immediate behavioral relevance and can be used to categorize memories. These data reveal the functional efficacy of multisensory processing

    Diel trophic structuring of seagrass bed fish assemblages in the Wakatobi Marine National Park, Indonesia

    No full text
    The faunal communities of seagrass beds throughout SE Asia are highly threatened by continued overexploitation, yet their ecology is poorly understood. Developing a greater understanding of the faunal linkages between seagrass beds and associated coastal habitats can facilitate more informed ecosystem level management. The present study used beach seine netting to sample seagrass bed fish assemblages in the Wakatobi Marine National Park, Indonesia, to investigate diel migrations of fish into and out of seagrass beds. These fish assemblages were found to be diverse relative to other studies within the region, with many species being economically important to local subsistence fisheries. The abundance, species richness and trophic structure of these fish assemblages changed with time of day indicating that fish populations are in a dynamic state. Mean fish abundance increased by ?45% from day to night (Day: 8.61 ± 0.13 fish 100 m?2; Night: 15.6 ± 1.4 fish 100 m?2) while mean species richness increased from 6.6 ± 1.9 per seine haul to 11.4 ± 0.2. Increasing abundance and diversity of fish at night suggests migration onto these habitats from nearby habitats such as reefs, mangroves or deep water; and/or increased activity of those fish resident within seagrass habitats. Division of species into trophic categories enabled the trophic structure of changing fish assemblages to be examined. Assemblages were dominated during both the day and night by invertebrate and fish feeders; however, a major diel change in trophic structure occurred in the abundance of omnivores. During the day omnivores were abundant, but they were replaced at night by exclusive invertebrate feeders. We therefore propose that diel changes in seagrass fish assemblages are predominantly structured by food availability, although other factors such as increased night-time shelter provision were also found to be important albeit to a much lesser extent. <br/

    Survivable information storage systems

    No full text

    Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study.

    No full text
    Using high-field (3 Tesla) functional magnetic resonance imaging (fMRI), we demonstrate that auditory and somatosensory inputs converge in a subregion of human auditory cortex along the superior temporal gyrus. Further, simultaneous stimulation in both sensory modalities resulted in activity exceeding that predicted by summing the responses to the unisensory inputs, thereby showing multisensory integration in this convergence region. Recently, intracranial recordings in macaque monkeys have shown similar auditory-somatosensory convergence in a subregion of auditory cortex directly caudomedial to primary auditory cortex (area CM). The multisensory region identified in the present investigation may be the human homologue of CM. Our finding of auditory-somatosensory convergence in early auditory cortices contributes to mounting evidence for multisensory integration early in the cortical processing hierarchy, in brain regions that were previously assumed to be unisensory
    corecore