41 research outputs found

    Augmented Lung Inflammation Protects against Influenza A Pneumonia

    Get PDF
    Influenza pneumonia causes high mortality every year, and pandemic episodes kill millions of people. Influenza-related mortality has been variously ascribed to an ineffective host response that fails to limit viral replication, an excessive host inflammatory response that results in lung injury and impairment of gas exchange, or to bacterial superinfection. We sought to determine whether lung inflammation promoted or impaired host survival in influenza pneumonia.To distinguish among these possible causes of influenza-related death, we induced robust lung inflammation by exposing mice to an aerosolized bacterial lysate prior to challenge with live virus. The treatment induced expression of the inflammatory cytokines IL-6 and TNF in bronchoalveolar lavage fluid 8- and 40-fold greater, respectively, than that caused by lethal influenza infection. Yet, this augmented inflammation was associated with striking resistance to host mortality (0% vs 90% survival, p = 0.0001) and reduced viral titers (p = 0.004). Bacterial superinfection of virus infected lungs was not observed. When mice were repeatedly exposed to the bacterial lysate, as would be clinically desirable during an influenza epidemic, there was no tachyphylaxis of the induced viral resistance. When the bacterial lysate was administered after the viral challenge, there was still some mortality benefit, and when ribavirin was added to the aerosolized bacterial lysate, host survival was synergistically improved (0% vs 93.3% survival, p<0.0001).Together, these data indicate that innate immune resistance to influenza can be effectively stimulated, and suggest that ineffective rather than excessive inflammation is the major cause of mortality in influenza pneumonia

    Muramyl Dipeptide Induces NOD2-Dependent Ly6Chigh Monocyte Recruitment to the Lungs and Protects Against Influenza Virus Infection

    Get PDF
    Bacterial peptidoglycan-derived muramyl dipeptide (MDP) and derivatives have long-recognized antiviral properties but their mechanism of action remains unclear. In recent years, the pattern-recognition receptor NOD2 has been shown to mediate innate responses to MDP. Here, we show that MDP treatment of mice infected with Influenza A virus (IAV) significantly reduces mortality, viral load and pulmonary inflammation in a NOD2-dependent manner. Importantly, the induction of type I interferon (IFN) and CCL2 chemokine was markedly increased in the lungs following MDP treatment and correlated with a NOD2-dependent enhancement in circulating monocytes. Mechanistically, the protective effect of MDP could be explained by the NOD2-dependent transient increase in recruitment of Ly6Chigh “inflammatory” monocytes and, to a lesser extent, neutrophils to the lungs. Indeed, impairment in both Ly6Chigh monocyte recruitment and survival observed in infected Nod2-/- mice treated with MDP was recapitulated in mice deficient for the chemokine receptor CCR2 required for CCL2-mediated Ly6Chigh monocyte migration from the bone marrow into the lungs. MDP-induced pulmonary monocyte recruitment occurred normally in IAV-infected and MDP-treated Ips-1-/- mice. However, IPS-1 was required for improved survival upon MDP treatment. Finally, mycobacterial N-glycolyl MDP was more potent than N-acetyl MDP expressed by most bacteria at reducing viral burden while both forms of MDP restored pulmonary function following IAV challenge. Overall, our work sheds light on the antiviral mechanism of a clinically relevant bacterial-derived compound and identifies the NOD2 pathway as a potential therapeutic target against IAV

    Epidemiological and clinical characteristics of childhood pandemic 2009 H1N1 virus infection: an observational cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There was a pandemic influenza around the world in 2009 including South Korea since last pandemic occurred four decades ago. We aimed to evaluate the epidemiological and clinical characteristics of this infection in childhood.</p> <p>Methods</p> <p>We evaluated the epidemiologic characteristics of all the subjects infected with the 2009 H1N1 influenza A virus (2,971 patients, ≤ 15 years of age), and the clinical and laboratory findings of the inpatients (217 patients, 80 had pneumonia) between 1 September 2009 and 31 January 2010 in a single hospital throughout the epidemic.</p> <p>Results</p> <p>The age distribution of all the subjects was relatively even. Over 90% of cases occurred during a two-month period. Two hundred and five patients (94.5%) received oseltamivir within 48 h of fever onset, and 97% of inpatients defervesced within 48 h of medication. The group with pneumonia included more males than females, and had higher leukocytes counts with lower lymphocyte differentials than the group without pneumonia. The white blood cell count and lymphocyte differential were associated with the severity of pneumonia. Corticosteroid treatment for severe pneumonia patients was highly effective in preventing disease progression.</p> <p>Conclusion</p> <p>Children of all ages affected with even rates of infection, but males were predominant in pneumonia patients. Pneumonia patients showed lymphopenia and its severity was associated with the severity of illness. Our results suggest that the mechanism of lung injury in 2009 H1N1 virus infection may be associated with the host immune response.</p

    Synergistic TLR2/6 and TLR9 Activation Protects Mice against Lethal Influenza Pneumonia

    Get PDF
    Lower respiratory tract infections caused by influenza A continue to exact unacceptable worldwide mortality, and recent epidemics have emphasized the importance of preventative and containment strategies. We have previously reported that induction of the lungs' intrinsic defenses by aerosolized treatments can protect mice against otherwise lethal challenges with influenza A virus. More recently, we identified a combination of Toll like receptor (TLR) agonists that can be aerosolized to protect mice against bacterial pneumonia. Here, we tested whether this combination of synthetic TLR agonists could enhance the survival of mice infected with influenza A/HK/8/68 (H3N2) or A/California/04/2009 (H1N1) influenza A viruses. We report that the TLR treatment enhanced survival whether given before or after the infectious challenge, and that protection tended to correlate with reductions in viral titer 4 d after infection. Surprisingly, protection was not associated with induction of interferon gene expression. Together, these studies suggest that synergistic TLR interactions can protect against influenza virus infections by mechanisms that may provide the basis for novel therapeutics

    Bordetella pertussis Infection Exacerbates Influenza Virus Infection through Pertussis Toxin-Mediated Suppression of Innate Immunity

    Get PDF
    Pertussis (whooping cough) is frequently complicated by concomitant infections with respiratory viruses. Here we report the effect of Bordetella pertussis infection on subsequent influenza virus (PR8) infection in mouse models and the role of pertussis toxin (PT) in this effect. BALB/c mice infected with a wild-type strain of B. pertussis (WT) and subsequently (up to 14 days later) infected with PR8 had significantly increased pulmonary viral titers, lung pathology and mortality compared to mice similarly infected with a PT-deficient mutant strain (ΔPT) and PR8. Substitution of WT infection by intranasal treatment with purified active PT was sufficient to replicate the exacerbating effects on PR8 infection in BALB/c and C57/BL6 mice, but the effects of PT were lost when toxin was administered 24 h after virus inoculation. PT had no effect on virus titers in primary cultures of murine tracheal epithelial cells (mTECs) in vitro, suggesting the toxin targets an early immune response to increase viral titers in the mouse model. However, type I interferon responses were not affected by PT. Whole genome microarray analysis of gene expression in lung tissue from PT-treated and control PR8-infected mice at 12 and 36 h post-virus inoculation revealed that PT treatment suppressed numerous genes associated with communication between innate and adaptive immune responses. In mice depleted of alveolar macrophages, increase of pulmonary viral titers by PT treatment was lost. PT also suppressed levels of IL-1β, IL-12, IFN-γ, IL-6, KC, MCP-1 and TNF-α in the airways after PR8 infection. Furthermore PT treatment inhibited early recruitment of neutrophils and NK cells to the airways. Together these findings demonstrate that infection with B. pertussis through PT activity predisposes the host to exacerbated influenza infection by countering protective innate immune responses that control virus titers

    Cotton Rat (Sigmodon hispidus) Signaling Lymphocyte Activation Molecule (CD150) Is an Entry Receptor for Measles Virus

    Get PDF
    Cotton rats (Sigmodon hispidus) replicate measles virus (MV) after intranasal infection in the respiratory tract and lymphoid tissue. We have cloned the cotton rat signaling lymphocytic activation molecule (CD150, SLAM) in order to investigate its role as a potential receptor for MV. Cotton rat CD150 displays 58% and 78% amino acid homology with human and mouse CD150, respectively. By staining with a newly generated cotton rat CD150 specific monoclonal antibody expression of CD150 was confirmed in cotton rat lymphoid cells and in tissues with a pattern of expression similar to mouse and humans. Previously, binding of MV hemagglutinin has been shown to be dependent on amino acids 60, 61 and 63 in the V region of CD150. The human molecule contains isoleucine, histidine and valine at these positions and binds to MV-H whereas the mouse molecule contains valine, arginine and leucine and does not function as a receptor for MV. In the cotton rat molecule, amino acids 61 and 63 are identical with the mouse molecule and amino acid 60 with the human molecule. After transfection with cotton rat CD150 HEK 293 T cells became susceptible to infection with single cycle VSV pseudotype virus expressing wild type MV glycoproteins and with a MV wildtype virus. After infection, cells expressing cotton rat CD150 replicated virus to lower levels than cells expressing the human molecule and formed smaller plaques. These data might explain why the cotton rat is a semipermissive model for measles virus infection
    corecore